目前国内外桥梁多采用哪种结构,以及桥梁结构的发展趋势? 未来桥梁的发展趋势?

www.zhiqu.org     时间: 2024-05-30
  1.1.1 我国公路桥梁建设水平改革开放以来,我国公路建设事业迅猛发展,作为公路建设重要组成部分的桥梁建设也得到了相应发展,特别是近十年来,我国大跨径桥梁的建设进入了一个最辉煌的时期,一大批结构新颖、技术复杂、设计和施工难度大和科技含量高的大跨径桥梁相继建成,标志着我国的公路桥梁建设水平已跻身于国际先进行列。近几年建成的特大桥梁,不少在世界桥梁科技进步中具有显著地位。诸如正在建设的重庆朝天门大桥是世界最大跨度钢拱桥,并创造了该类型桥梁十余项世界第一;苏通大桥以主跨1088m为世界第一跨度斜拉桥,同时成为世界上连续长度最大的双塔斜拉桥;润扬长江公路大桥南汊悬索桥,以1490m跨度为世界第三大悬索桥;刚通车的杭州湾跨海大桥为世界第一长跨海大桥;万县长江大桥为目前世界上跨度最大的混凝土拱桥;此外江阴长江公路大桥、香港青马大桥,其跨度分别在悬索桥中居世界第四位和第五位;南京长江二桥、白沙洲长江大桥、荆沙长江大桥、鄂黄长江大桥、大佛寺长江大桥、李家沱长江大桥等特大桥的跨度名列预应力混凝土斜拉桥世界前十位。
一座座桥,实现了天堑的跨越,缩短了时间与空间的距离,美化了秀美山川,为我国疆域的沟通和经济的腾飞起着了重要的作用。
1.1.2 我国公路桥梁发展趋势 随着科技的发展,新材料的开发和应用,在桥梁设计阶段采用高度发展的计算机辅助手段,进行有效的快速优化和仿真分析,运用智能化制造系统在工厂生产部件,利用GPS和遥控技术控制桥梁施工。目前,我国桥梁建设正在与国际接轨,开始向大跨、新型、轻质和美观方向发展。
(1) 跨径不断增大
目前,世界上钢梁、钢拱的最大跨径已超过500m,钢斜拉桥为890m,而钢悬索桥达1990m。随着跨江跨海的需要,钢斜拉桥的跨径已经突破1000m,钢悬索桥将超过3000m。至于混凝土桥,梁桥的最大跨径为300m,拱桥已达420m,斜拉桥为530m。
(2) 桥型不断丰富
本世纪50~60年代,桥梁技术经历了一次飞跃:混凝土梁桥悬臂平衡施工法、顶推法和拱桥无支架方法的出现,极大地提高了混凝土桥梁的竞争能力;斜拉桥的涌现和崛起,展示了丰富多彩的内容和极大的生命力;悬索桥采用钢箱加劲梁,技术上出现新的突破。
(3) 结构不断轻型化
悬索桥采用钢箱加劲梁,斜拉桥在密索体系的基础上采用开口截面甚至是板,使梁的高跨比大大减少,非常轻盈;拱桥采用少箱甚至拱肋或桁架体系;梁桥采用长悬臂、薄板件等,这些都使桥梁上部结构越来越轻型化。
(4) 重视美学及环境保护
桥梁是人类最杰出的建筑之一,闻名遐尔的美国旧金山金门大桥、澳大利亚悉尼港桥、英国伦敦桥、日本明石海峡大桥、中国上海杨浦大桥、南京长江二桥、香港青马大桥,这些著名大桥都是一件件宝贵的空间艺术品,成为陆地、江河、海洋和天空的景观,成为城市标志性建筑。因此,21世纪的桥梁结构必将更加重视建筑艺术造型,重视桥梁美学和景观设计,重视环境保护,达到人文景观同环境景观的完美结合。
1.2 大跨径桥梁的分类与特点 对桥梁按结构体系分类是以力学特征为基本着眼点,以主要的受力构件为基本依据,可分为梁式桥、拱式桥、斜拉桥、悬索桥、刚架桥五大类。
1.2.1 梁式桥 梁式桥种类很多,也是公路桥梁中最常用的桥型,其跨越能力可从20m直到300m之间。公路桥梁最常用的大跨径梁式桥主要为预应力混凝土连续箱形梁桥(图1-1),70年代我国公路上开始修建连续箱梁桥,到目前为止我国已建成了多座连续箱梁桥,如一联长度1340m的钱塘江第二大桥和跨越高集海峡全长2070m的厦门大桥等,目前,我国预应力混凝土连续梁最大跨径为165m(南京二桥北汊主桥)。由于预应力混凝土连续箱梁它具有桥面接缝少、梁高小、刚度大、整体性强,外形美观,便于养护等在构造、施工和使用上的优点,近年来已成为建成较多的桥梁。其发展趋势为:减轻结构自重,采用高标号混凝土。随着建筑材料和预应力技术发展,其跨径增大,葡萄牙已建成250m的连续箱梁桥,超过这一跨径,也不是太经济的。大跨径梁桥的上部结构大多采用箱形截面,是因为箱形截面有较大的抗扭刚度,箱梁允许有最大细长度,同T形梁相比徐变变形较小。由于嵌固在箱梁上的悬臂板,其长度可以较大幅度变化,并且腹板间距也能放大,能适应各种使用条件,特别适合于预应力混凝土连续梁桥、变宽度桥,因此,箱梁能在独柱支墩上建成弯斜桥。
连续箱梁桥的施工方法多种多样,只能因时因地,根据安全经济、保证质量、降低造价、缩短工期等方面因素综合考虑选择。一般常用的方法有:立支架就地现浇、预制拼装(可以整孔、分段串联)、悬臂浇筑、顶推、用滑模逐跨现浇施工等。预应力钢束采用钢绞线,可以分段或连续配束,一般采用大吨位群锚。为了减轻箱梁自重,可以采用体外预应力钢束。虽然连续箱梁桥采用预应力混凝土建造,能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。但由于结构本身的自重大(约占全部设计荷载的30%至60%),且跨度越大其自重所占的比值更显著增大,大大限制了其跨越能力。还有大跨径连续箱梁要采用大吨位支座,如南京二桥北汊桥165m变截面连续箱梁,盆式橡胶支座吨位达65O0kN。这种样大吨位支座性能如何、将来如何更换等一系列问题有待研究。

1.2.2 拱式桥拱桥,在桥梁的发展史上曾经占有重要地位,迄今为止,已有三千多年的历史,当今亦因其形态美、造价低、承载潜力大而得到广泛的应用,也是大跨径桥梁形式之一,跨径从几十米到四百多米。我国大跨度混凝土拱桥的建设技术,居国际领先水平。拱桥的受力特点为拱肋承压、支承处一般有水平推力,按其建造材料来分,可分为圬工拱桥、钢筋(骨)混凝土拱桥、钢管混凝土拱桥、钢拱桥等。
(1) 圬工拱桥最常见的为石拱桥,我国古代石拱桥建造就有很高的成就,如修建于公元606年的河北赵县安济桥,跨径37.4m,矢高7.23m,宽约9m,在跨度方面曾保持记录达1350年之久,且至今保存完好。圬工拱桥不便于实现工厂化施工,施工周期较长,相应的费用较高。同时,圬工材料尽管适合承压,但其自重相对于许用应力而言较大,因而不适于用作大跨度桥梁。
(2) 钢筋混凝土拱桥为拱桥的主要形式,它分箱形拱、肋拱、桁架拱。根据近年的实践,常用的拱桥施工方法有主支架现浇、预制梁段缆索吊装、预制块件悬臂安装、半拱转体法、刚性或半刚性骨架法。我国钢筋混凝土拱桥的发展趋势为拱圈轻型化,长大化以及施工方法多样化。刚建成的万县长江大桥为劲性骨架箱拱,跨径420m,居世界第一。
(3) 在我国自90年代以来,钢管混凝土拱桥(图1-2)迅速发展,现已建成跨径大于200m的十几座,最大跨径为2005年建成的重庆巫山长江大桥(主跨460m)中承式钢管混凝土双肋拱桥,为世界第一钢管混凝土拱桥。钢管混凝土钢管混凝土是在钢管内填充混凝土,使钢管和混凝土在受压方面实现优势互补:钢管借助于其内部的混凝土其抗压性能和稳定性得以增强;而内部的混凝土由于处于三向受压状态而使自身的强度得以提高。钢管混凝土更接近于一种新材料,具有强度高、塑性好、耐高温、耐腐蚀、抗冲击性能好等优点。它不仅在力学方面性能优越,而且在施工方面也有许多优点。例如钢管本身可以兼作模板骨架,不用拆模、支模,混凝土可以泵灌;钢管本身可以兼作纵筋和箍筋,卷制钢管较制作、绑扎钢筋骨架容易。
1.2.3 斜拉桥 斜拉桥是我国大跨径桥梁最流行的桥型之一,目前为止建成或正在施工的斜拉桥共有40余座(图1-3)。大跨径混凝土斜拉桥的数量已居世界第一。整体来说,我国斜拉桥设计施工水平已迈入国际先进行列,部分成果达到国际领先水平。目前,我国正建设的香港昂船洲大桥、建设将要通车的江苏苏通大桥,其主跨均达到1000m以上。我国至今已建成各种类型的斜拉桥100多座,其中有52座跨径大于200m,数量占世界第一。斜拉桥由索塔、主梁、斜拉索组成主要承重构件,利用索塔上伸出的若干斜拉索在梁跨内增加了弹性支承,减小了梁内弯矩,受力特点为外荷载从梁传递到索,再到索塔。选择不同的结构外形和材料可以组合成多彩多姿、新颖别致的各种形式。索塔型式有A型、倒Y型、H型、独柱,材料有钢、混凝土的。主梁有混凝土梁、钢箱梁、结合梁、混合式梁。斜拉索布置有单索面、平行双索面、斜索面,拉索材料有热挤PE防护平行钢丝索、PE外套防护钢绞线索。斜拉桥的施工方法主要采用悬臂浇筑和预制拼装。 斜拉桥优点:梁体尺寸较小,使桥梁的跨越能力增大;受桥下净空和桥面标高的限制小;抗风稳定性优于悬索桥,且不需要集中锚锭构造;便于无支架施工。斜拉桥缺点:由于是多次超静定结构,计算复杂;索与梁或塔的连接构造比较复杂;施工中高空作业较多,且技术要求严格。斜拉桥作为一种拉索体系,比梁式桥有更大的跨越能力。由于拉索的自锚特性而不需要悬索桥那样巨大锚碇,加之斜拉桥有良好的力学性能和经济指标,已成为大跨度桥梁最主要桥型,在跨径200~800m的范围内占据着优势。

1.2.4 悬索桥 悬索桥是特大跨径桥梁的主要型式之一,其造型优美,规模宏伟,常被人们称为“桥梁皇后”。从1883年美国建成布鲁克林桥(主跨486m)开始,至今已有120多年历史。20世纪80年代末,世界上修建悬索桥到了鼎盛时期,建成跨径大于1000m的悬索桥17座。日本于1998年建成了世界最大跨度的明石海峡大桥(主跨1991m),将悬索桥跨径从20世纪30年代的1000m提高到接近2000m,是世界悬索桥建设史上的一座丰碑。我国在悬索桥建设方面犹如异军突起,1995年在国内率先建成了汕头海湾大桥(主跨452m),在近五年内,相继建成西陵长江大桥(主跨900m)、虎门大桥(主跨888m)、宜昌长江大桥(主跨960m)以及名列世界第四位的江阴长江大桥(主跨1385m),名列世界第五位的(公铁两用桥名列第一位)香港青马大桥(主跨1377m)等11座大跨度悬索桥。多年来,我们积累了丰富的悬索桥设计与施工经验,已建成的润扬长江大桥(主跨1490m),标志着我国悬索桥设计和施工水平已迈入国际先进水平行列。悬索桥由索塔、锚碇、主缆、吊索(或吊杆)和主梁(加劲梁)5大部分组成。主缆为主要承重构件,受力特点为外荷载从梁通过系杆传递到主缆,再到两端锚锭。主要材料为预应力钢索。

悬索桥由于主缆采用高强钢材,受力均匀,因此具有很大的跨越能力,但亦具有整体刚度小、抗风稳定性不佳产,费用高、施工难度大等缺点。此种结构当跨径大于800m时,方具有很大的竞争力。

其实各种桥梁中应用最多的结构是梁式桥。
梁式桥用梁或桁架梁作主要承重结构的桥梁。其上部结构在铅垂向荷载作用下,支点只产生竖向反力。梁式桥为桥梁的基本体系之一。制造和架设均甚方便,使用广泛,在桥梁建筑中占有很大比例。城市里的公路高架桥和立交桥就是属于梁式桥。
跨河时如果河道没有通航要求,梁式桥是第一选择。有通航要求,再根据运量和船舶大小选择桥梁类型:梁式桥、刚架桥、拱式桥、斜拉桥、吊桥(悬索桥),还有各种复合型的桥。跨河大桥的桥型一般根据河面净宽、通航量和通航船舶大小来选择,还有就是城市规划了。

斜拉桥、悬索桥因为它有着高高的桥塔和一个工程数字往往成为一个地标(世界净跨度最大的桥记录都是悬索桥),而最常见、最默默无闻的梁式桥经常会被人遗忘。

悬索、斜拉结构用的比较多

桥梁工程国内外设计现状与发展趋势~

3 20世纪桥梁发展主要成就
3.1 学科发展
桥梁工程已被确认为一门独立的科学技术,不再是
仅凭桥梁设计者们智慧和经验的创造过程。它已发展成
融理论分析、设计、施工控制及管理于一体的系统性学
科。由于科技的进步,一些相关的学科也渗透入桥梁工
程领域中,发展了新的分支学科,如桥梁抗风、抗震、桥梁
CAD、桥梁的施工控制及桥梁检测技术等等。
3.2 建设规模及施工技术
3.2.1 跨径不断增大
目前,钢梁、钢拱的最大跨径已超过500m,钢斜拉桥
为890m,而钢悬索桥达1990m。随着跨江跨海的需要,
钢斜拉桥的跨径将突破1000m,钢悬索桥将超过3000m。
至于混凝土桥,梁桥的最大跨径为270m,拱桥已达
420m,斜拉桥为530m。
3.2.2 桥型不断丰富
20世纪50~60年代,桥梁技术经历了一次飞跃:混
凝土梁桥悬臂平衡施工法、顶推法和拱桥无支架方法的
出现,极大地提高了混凝土桥梁的竞争能力;斜拉桥的涌
现和崛起,展示了丰富多彩的内容和极大的生命力;悬索
桥采用钢箱加劲梁,技术上出现新的突破。所有这一切,
使桥梁技术得到空前的发展。
3.2.3 结构不断轻型化
悬索桥采用钢箱加劲梁,斜拉桥在密索体系的基础
上采用开口截面甚至是板,使梁的高跨比大大减少,非常
轻颖;拱桥采用少箱甚至拱肋或桁架体系;梁桥采用长悬
臂、板件减薄等,这些都使桥梁上部结构越来越轻型化。


3.2.4 桥梁墩台及基础技术不断发展
随着上部结构的迅猛发展,必然给下部结构提出更
高的要求。自钢筋混凝土推广使用以来,桥梁墩台的结
构形式趋于多样化。除了传统的重力墩台外,发展了空
心墩、桩柱式墩台、构架式墩台、框架式墩台、双柱式墩、
拼装墩台及预应力钢筋薄壁墩等新型墩台,并日趋轻型、
柔性化。高墩技术也有较大发展。与此同时,桥梁基础
也在发展。50年代以后,越江、跨海湾、海峡大桥的兴建
以中国、日本为首大力发展了深水基础技术。如50年代
在武汉长江大桥中首创了管柱基础;60年代在南京长江
大桥中发展了重型沉井、深水钢筋混凝土沉井和钢沉井;
70年代在九江长江大桥中创造了双壁钢围堰钻孔桩基
础;80年代后进一步发展了复合基础。在日本,由于本
四联络线工程的建设,近20年来,其深水基础技术发展
很快,以地下连续墙、设置沉井和无人沉箱技术最为突
出。
3.3 设计风格
桥梁设计风格的转变主要表现为以下3个方面:
(1)由于计算机的出现与发展,为桥梁设计师们提
供了新的设计工具,并已逐步取代了手工制图。桥梁设
计师们的创造力与想象力在电脑中得以充分展现。
(2)随着人类对地球生态平衡、自然环境及资源的
日益重视,对桥梁工程提出了与周围环境相协调的要求
桥梁的设计更加注重景观设计。
(3)大跨度桥梁的发展,不仅要求对成桥状态进行
设计,对施工阶段的设计也很重视,将施工方法与施工过
程相结合已成为现代桥梁设计的一大特色。


4 桥梁工程发展探因
4.1材料革新
土木工程发展史表明,材料的每一次变革都会带来
土木工程的巨大飞跃。桥梁工程因此获得了一次又一次
的发展机遇。公元前5世纪至公元前3世纪,砖出现于
中国,实现了土木工程的第1次飞跃,开始了砖、木结构
的桥梁时代。19世纪波特兰水泥、现代钢材在欧洲的出
现,实现了土木工程的第2次飞跃,桥梁工程获得了空前
大发展,桥梁结构形式及规模有了突破。20世纪初叶,
预应力混凝土的出现,实现了土木工程的第3次飞跃,开
始了混凝土桥梁结构的时代。20世纪70年代开始,出
现了以碳纤维为代表的高级复合材料,首先被用于航空、
航天等高科技领域,现正逐步渗透到桥梁工程领域之中。
4.2 电子计算机技术
当今的各种高新技术革命中,以计算机技术革命最
为耀眼。自本世纪70年代第1台微型计算机的诞生,开
辟了计算机新时代,从根本上改变了结构工程分析的历
史,一门新的学科———计算结构力学得以产生,有限元法
就此成为分析复杂桥梁结构形式的主要方法。随着计算
机技术的不断进步,促成了以计算机为辅助设计的桥梁
CAD技术分支学科的形成。
4.3 预应力思想
预应力思想被喻为本世纪中最为革命的结构思想,
它源于1910年法国工程师金.弗来西奈设计建造的足尺
试验拱桥(跨度72.5m)中。此后的数十年里被推广到混
凝土结构中,形成了一整套预应力混凝土技术。在桥梁
工程的建设中,发挥出重大作用,创造了巨大的经济与社
会效益,其应用已遍及各种桥梁结构形式,不仅带动了中
小跨度桥梁的迅猛发展,也促成了大跨度桥梁的进步。
尤其在斜拉桥中,这种思想的发挥达到了顶点。此外,它
也被用于桥梁工程的施工过程之中,衍生出许多新的施
工方法和工艺;而在旧桥加固领域里,也显示出很强的竞
争力。当今由于预应力思想的结合,使得预应力混凝土
已成为本世纪最主要的桥梁材料。
4.4 自架设体系思想
在本世纪桥梁工程的发展历程中,预应力思想促进
了桥梁结构形式的变革,而自架设体系思想带来了大跨
度桥梁施工技术的变革,两种思想交相辉映。自架设体
系思想是通过将结构离散成若干小的单元或构件,以便
于预制或现浇,然后按特定的施工步骤进行拼装或浇注,
已完成的结构部分就可以作为支撑体系参与下一阶段的
施工,直到全部结构的完成。它体现了“化整为零、集零
为整”的特点。这种思想在大跨度悬索桥、斜拉桥、拱桥
及连续梁桥等桥型的施工中得到灵活应用。在施工过程
中,由于存在着体系转化及受几何非线性、材料非线性因
素的影响,施工期间结构的受力状态比成桥状态更为不
利,于是提出了对施工阶段进行控制设计的要求。几经
发展,施工控制技术已逐步成为一门新兴的桥梁工程分
支学科。
4.5 桥梁设计竞赛机制
桥梁设计竞赛的传统在19世纪末就已在瑞士盛行,
促进了当时瑞士桥梁工程的发展。两位世界级的桥梁设
计师罗伯特.马亚尔(1872-1940)和奥斯玛.安曼(1879
-1966)就深得这种传统的熏陶,前者曾创造出轻盈的薄
混凝土拱桥,而后者设计了乔治.华盛顿桥、维拉扎诺悬
索桥。随后在国外的许多大型跨海工程中都广泛地实行
了竞赛制,如丹麦的大贝尔特工程,由于政治原因设计竞
赛持续了25年之久,期间许多新的设计构思层出不穷,
积累了丰富的桥梁结构设计经验。因而设计竞赛的实行
一定程序上推动了桥梁工程事业的发展。4.6施工管理
体制桥梁工程的建设过程实际上也是施工组织活动的过
程。18世纪,欧洲兴起花型建筑的热潮,开始出现设计
与施工的分离。后来在英国进一步发展成了工程建设监
理体制。1956年由国际咨询工程师联合会(FIDIC)和欧
洲建筑工程联合会(FIEC)共同发起对英国土木工程师
学会(ICE)制定的合同条款进行修改,颁布了“FIDIC”合
同条件,后经历了1969、1977、1987年的3次改版。几十
年来它已被世界各国土木工程界广泛接受和借鉴,给桥
梁工程建设行业注入了新的活力,为确保桥梁的工程质
量、加快工程进度、控制工程造价提供了可靠的保障。
5 21世纪桥梁工程发展前瞻
5.1 学科发展
如前所述,本世纪以来桥梁结构工程已发展成系统
性的工程学科,主体框架已构筑完毕,但远未完善。可以
预见,未来的世纪,这些分支将得以独立发展成熟,同时
也会相互渗透。
桥梁抗风领域,大跨度桥梁风致振动控制技术将成
为研究的热点,试验仍将以风洞为依托。随着计算机技
术的不断更新进步,数值风洞技术可望有突破。
随着计算机微处理器技术的迅猛发展,桥梁CAD技
术将面临新的发展机遇。集结构分析、工程制图、工程数
据库及专家系统的桥梁CAD软件将会问世,并将迈入桥
梁设计的网络时代。
桥梁施工控制技术将进一步发展,GPS(Global Posi-
tioning System)技术的应用将成为施工测量技术研究的
热点。基础工程发展的重点在于海洋钻井平台技术的引
进。旧桥加固检测技术的开发应用将成为下一世纪桥梁
工程领域的另一道风景线。
5.2材料发展
目前,在世界范围,高性能混凝土的研究在深入,应
用在扩展。北欧国家如挪威、瑞典,桥梁基本都采用
HPC(高性能混凝土)建造,目前对桥梁混凝土除高耐久
与高强要求外,又增加了轻质的要求,因为桥梁上部结构
使用轻质HPC(容重约1.9t/m3),桥梁自重减轻了,可以
降低桥梁下部结构的成本,轻质高强(56~74MPa)HPC
已经成功地在挪威一些工程中应用。美国、加拿大在
SHRP计划的研究与应用基础上,正在大力宣传和推广
应用HPC建设桥梁。有理由相信,高性能混凝土将获得
越来越广泛的应用,并且会成为21世纪桥梁建设的优选
工程材料。

  21世纪世界桥梁将实现新型、大跨、轻质、灵敏和美观的国际桥梁发展新目标。

  桥梁结构形式多彩多姿

  迄今为止,古今中外所有的桥梁均按照构造和受力体系分类,大致可分为8种:刚架桥、拱桥、系杆拱桥、简支梁桥、连续梁桥、T构桥、斜拉桥、悬索桥。如中国古桥赵州桥、各种石拱桥、混凝土拱桥、钢管拱桥均属拱桥类;南京长江大桥、九江长江大桥、杭州钱江二桥等属连续梁桥类;美国旧金山的金门大桥、中国西陵长江大桥、汕头海湾大桥均属悬索吊桥;武汉长江二桥、芜湖长江大桥、宜昌夷陵长江大桥等均属斜拉桥类。

  21世纪,随着高强度钢、玻璃钢、铝合金、碳纤维等太空轻质材料的大量启用,桥梁建筑的主要材料将不断更新,桥梁结构的形式将呈现出多样化发展格局。

  目前,计算机技术的发展为桥梁结构的优化设计创造了条件,使桥梁设计人员可以对即将兴建的桥梁进行仿真分析,使不同材料的性能发挥到极致;结构动力学理论的发展与完善使设计者采用非常轻质的梁型时,不致出现像著名的塔可马吊桥那样有被风吹塌的危险;依靠科技进步可使设计人员打破常规,采取特殊的结构措施,用最少的钱造出轻质、美观而实用的桥梁来。如跨越地中海的直布罗陀海峡大桥采用了浮桥方案,但不是传统意义上浮在水上的浮桥,而是将桥梁基础放在一个巨大的没于水中的水密舱上,水密舱锚定于海底,其上部结构即为常规桥梁,其反吊桥结构形式首开国际桥式之先河;再如世纪之交中国推出的大跨转体钢管拱桥北盘江大桥,其桥梁结构形式在国际上也是绝无仅有的。21世纪还将出现一种水下密封隧道式桥梁。意大利墨西拿海峡大桥在设计时就有这种比选方案,这种桥下部结构为承台固基,上部结构则是一个沉埋水下管段式密封隧道,这是针对墨西拿海峡大桥常年狂风大浪、恶劣气候而精心选定的桥隧方案。21世纪方兴未艾的结合梁型的桥梁、斜拉桥、悬索桥也将得到长足发展。

  新型材料擎起大跨、轻质桥梁

  自18世纪80年代以来的200多年间,随着大工业的兴起和交通运输的需要而发展起来的世界桥梁,桥跨由英国熟铁链杆桥曼内海峡桥主跨177米的最初桥跨的世界之最,到1931年美国建成乔治华盛顿桥,主跨首先突破1000米大关,达到1067米,百米到千米桥跨的发展历经了一个半世纪。20世纪的后70年里,美国的主跨1280米的金门大桥、主跨1289米的维拉扎纳大桥,两次刷新了当时的世界桥跨记录,到20世纪八九十年代英国的恒比尔河大桥、日本的明石海峡大桥先后再次刷新世界桥跨记录,桥跨才开始接近2000米大关。

  21世纪世界桥梁跨度有多长?随着意大利主跨3300米的墨西拿海峡大桥设计的完成,人类社会的建桥技术、新型材料运用使桥梁跨度已步入登峰造极阶段。据有关桥梁专家预测,筹建中的西班牙与摩洛哥之间的直布罗陀海峡大桥、美俄之间的白令海峡大桥的桥梁跨度将突破墨西拿海峡大桥主跨的长度,成为21世纪新的世界桥梁跨度之最。这些主跨接近4000米达到登峰造极水平的特大型桥梁建成之后,除大洋洲孤悬于大洋之中外,亚非欧美四大洲将联为一体。

  据有关桥梁专家介绍,21世纪的桥梁主材将采用高强度、高韧性钢材和抑振合金材料。日本明石海峡大桥的加劲梁采用780兆帕焊接时低预热型新型高强度钢板,使其桥梁主跨设计刷新了20世纪的最大跨记录,达到1990米。21世纪钢桁连续梁将大量采用高强度低预热型焊接用钢板,大线能量焊接用钢板、高韧性钢板、抗层状撕裂型钢板、异形钢板、耐候钢及镀锌钢板、抑振厚板、玻璃钢、抑振合金材料,不仅可有效地增大钢桁梁桥的桥跨,而且能有效地降低梁体自重,实现大跨、轻质目标。高强度混凝土是桥梁建设必不可少的主材料之一,21世纪的混凝土材料将加入来亚纳米、水溶性聚合物、有机纤维以不断提高强度与耐久性。桥梁建设将广泛运用环保型混凝土,桥梁的韧性、耐久性及强度将得以有效地提高。

  桥灵路畅与环保相得益彰

  20世纪90年代以来,桥梁界设计与建造桥梁时将实用功能与艺术构思融为一体,充分考虑周边环境保护,使一座座桥梁成为城市中新的旅游风景线。如连接京九铁路、贯通湖北黄梅和江西九江的九江长江大桥,是我国目前规模最大的柔性拱刚性梁连续栓焊钢桁梁特大桥,远看像一条游龙腾跃飞九霄,与周边庐山峻岭秀峰、甘棠白水碧湖、鄱阳湖潮浔阳楼阁等名山锦绣相得益彰。目前,欧美、日本等发达国家的桥梁设计不仅追求造型美与环境协调,实用功能更是不断提高,许多国家的大型海峡桥、海湾桥、湖泊桥中间都设置了车站、商店;桥墩、桥塔上设置装饰独特的咖啡馆,或供人休闲游览的观景台,桥栏桥头布置雕塑、壁画之风方兴未艾。

  21世纪的桥梁建设最令人振奋的是大节段、大块件桥梁结构实现工厂预制,大吨位吊船现场快速安装。一座数千米上万米长的特大桥,墩台、桥塔、梁体安装仅需半年左右时间即可大功告成,既不破坏植被,又不污染施工水域,施工快捷质量好,并可节省大量的劳动力。上海东海大桥、待建的杭州湾跨海大桥的工厂预制、现场安装的设施及2000吨大型建桥浮吊船舶已问世,年内便可投入使用。目前,发达国家的桥梁施工已配有施工指导智能化系统,即利用高速计算机将现场通过自动化传感器对桥梁各部位坐标内力、应力、变形、温度、气象资料进行综合分析,自动判断,确立下一步施工方案及确保安全的应急措施。以保障大桥建造质量安全使用寿命万无一失。

  21世纪建成的新型大桥将“头脑”灵活,“感觉”敏捷,计算机系统和传感器系统将可以感知风力、气温状况,同时可随时得到并反映出大桥的承载情况、交通状况,桥面还将设有路径传感器,客车无人驾驶时不会偏离车道并能顺利通过大桥。自动收费装置将阻截“逃票”车辆,交费足额才可放行。桥体内的传感器可测出大桥各部位的危险及潜在故障,并及时发出警报。严寒冬季桥墩上的自动加热系统将启动吸收地热,将地热传向桥面融化冰雪;超载汽车、列车通过大桥之前,会被装在桥头的传感器感测出来,及时传感到智能装置,桥头放行栅栏将自动关闭,以防桥梁超载发生危险。21世纪的世界,将成为造福人类,代表社会进步与高度文明的标志性建筑。


#晁凯泉# 铁路桥梁的分类 -
(18517731211): 原发布者:相思maple 最新规范桥梁分类:一、体系分类,二、按跨径分类,三、按桥面位置分类,四、按主要承重结构所用的材料,五、按跨越方式分类,六、按施工方法分类,下面分别介绍,并附新老规范对比:一、体系分类按结构体系分...

#晁凯泉# 钢结构桥梁在国内应用现状 -
(18517731211): 优点:1.工期极短,实际工期可在几天内.因为所有结构构件均在工厂预制好,拉到现场吊装即可.2.拆卸方便.如果以后需要拆除,可以直接卸下螺栓,所有钢材还可以再利用到别的建筑.3.外观轻盈美观4.后处理方便.比如我需要在上面添加构件,焊上即可.很多优点,以上为主要的几点.缺点:1.抗腐蚀差.钢材易被腐蚀.2.抗火差,火灾情况下,大多数钢材在200度时即退出工作.耐火时间大都在2小时左右.3.成本高.

#晁凯泉# 古今中外的桥,姿态万千,各具风采.你知道的桥的类型有哪些?举五个例子 -
(18517731211): 石拱桥、 梁桥、浮桥、索桥和拱桥

#晁凯泉# 中外桥的风格对比 急 谁能告我 -
(18517731211): 关于世界第一座桥的建造,今天已经无法推想,但是从许多残迹遗址中,我们仍可以看到古代桥梁的大致分布形态.世界上每种桥梁都经历了由简到繁的蜕变,而且几乎每种桥梁都以顽强的生命力存活至今.总体来看,古代桥梁大约可分为七种...

#晁凯泉# 国内外关于“高层建筑的混凝土结构”研究的动向及发展趋势 -
(18517731211): 随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注.在众多的土木工程建设中,混凝土的应用面之广,使用次数之多...

#晁凯泉# 中国石拱桥介绍赵州桥时,采用了什么结构形式 -
(18517731211): 建造赵州桥时,采用了圆弧拱形式 采用圆弧拱形式,改变了我国大石桥多为半圆形拱的传统.我国古代石桥拱形大多为半圆形,这种形式比较优美、完整,但也存在两方面的缺陷:一是交通不便,半圆形桥拱用于跨度比较小的桥梁比较合适,而...

#晁凯泉# 国外土木工程发展现状 -
(18517731211): 引言 纵观人类文明史,土木工程建设在和自然斗争中不断地前进和发展.在我国的现代化建设中,土木工程业越来越成为国民发展的支柱产业.同时,随着社会和科技的发展,物的规模、功能、造型和相应的建筑技术越来越大型化、复杂化和多...

#晁凯泉# 我国预应力混凝土结构当前面临的问题是什么?
(18517731211): 我国预应力混凝土的起步比西欧大约晚10年,但由大规模建设的需要,不仅发展快,而且应用数量极为庞大.据1995年的不完全统计:采用预制预应力混凝土构件建造的...

#晁凯泉# 目前,治疗小儿腹泻常用的药物,比较安全保健受欢迎的有哪些 -
(18517731211): 目前,治疗小儿腹泻常用的药物,国内外较推崇的有: 1、蒙脱石粉,即思密达,具加强、修复消化道粘膜的屏障作用,并能固定、清除各种病毒、细菌及其毒素,适用于各种腹泻. 2、微生态调节剂,如双歧杆菌制剂,可调节肠道内环境的稳定,保护肠道内有益菌群,有利于腹泻的治疗. 3、丁桂儿脐贴(原名:宝宝一贴灵),纯中药治疗小儿腹泻外用贴剂,简单方便有效,且无副作用. 此三种药物,也可作为家庭小药箱的常备药物.