如何从理论推出形成10个电子的化合物和18个电子的氧化物。 氧化剂是得到电子或电子对偏向的物质。其中“电子对偏向的物质”...

www.zhiqu.org     时间: 2024-06-01
10电子和18电子的一般都是氢化物。
要么是几个氢原子连接一个非金属。因为8电子稳定结构,加上两个内层电子刚好10个。氢原子都是外层电子。比如H2O,NH3,CH4。
18个电子内层2+8=10个电子加上外层8电子也是稳定结构,一共18电子,比如HCl,H2S。
但是18电子的可以是10电子化合物与10电子化合物【基团】叠加,形成公用电子对,就会少一对电子。也是稳定结构,比如H2O2【HO~OH】,肼NH2-NH2,羟胺:NH2OH,甲醇,CH3OH,CH3CH3,CH3F,NH2F,O2.2-,CH3NH2,F2,HFO次氟酸常温难以存在,,由于共价键的形成,两个基团各比原始分子少一个氢原子而共价结合。
18电子的氧化物,最多两个氧原子,过氧化氢两个氧原子过氧不算氧化物。一个氧原子8电子和另一个或者几个原子10个电子,可以是Mg,刚好MgO满足,或者5个电子的两个,硼,不能形成B2O,所以只能是氧化镁。
希望对你有帮助O(∩_∩)O

以10电子和18电子的原子为基础,就是氖和氩原子,这是10和18电子的原子,一般就是再他们前面的元素+上氢元素。H2O2,肼NH2-NH2,:NH2OH,甲醇,CH3OH,CH3CH3,这些物质是减半后在加上一半

各种锂氧化物的电导率(电子、离子)比较~

锂离子电池(Li-ion Batteries)是锂电池发展而来。所以在介绍Li-ion之前,先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电.这种电池也可能充电,但循环性能不好,在充放电循环过程中,容易形成锂枝晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出, 又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。

锂离子电池电池组成部分

(1)电池上下盖

(2)正极——活性物质一般为氧化锂钴

(3)隔膜——一种特殊的复合膜

(4)负极——活性物质为碳

(5)有机电解液

(6)电池壳(分为钢壳和铝壳两种)


锂离子电池优缺点

锂离子电池具有以下优点:

1) 电压高,单体电池的工作电压高达3.6-3.9V,是Ni-Cd、Ni-H电池的3倍

2) 比能量大,目前能达到的实际比能量为100-125Wh/kg和240-300Wh/L(2倍于Ni-Cd,1.5倍于Ni-MH),未来随着技术发展,比能量可高达150Wh/kg和400 Wh/L

3) 循环寿命长,一般均可达到500次以上,甚至1000次以上.对于小电流放电的电器,电池的使用期限 将倍增电器的竞争力.

4) 安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。

5) 自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于Ni-Cd的25-30%,Ni、MH的30-35%。

6) 可快速充放电,1C充电是容量可以达到标称容量的80%以上。

7) 工作温度范围高,工作温度为-25~45°C,随着电解质和正极的改进,期望能扩宽到-40~70°C。

锂离子电池也存在着一定的缺点,如:

1) 电池成本较高。主要表现在正极材料LiCoO2的价格高(Co的资源较小),电解质体系提纯困难。

2) 不能大电流放电。由于有机电解质体系等原因,电池内阻相对其他类电池大。故要求较小的放电电流密度,一般放电电流在0.5C以下,只适合于中小电流的电器使用。

3) 需要保护线路控制。

A、 过充保护:电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解液分解,内部压力过高而导致漏液等问题;故必须在4.1V-4.2V的恒压下充电;

B、 过放保护:过放会导致活性物质的恢复困难,故也需要有保护线路控制。
摘要:综述了锂离子电池的发展趋势,简述了锂离子电池的充放电机理理论研究状况,总结归纳了作为核心技术的锂电池正负电极材料的现有的制备理论和近来发展动态,评述了正极材料和负极材料的各种制备方法和发展前景,重点介绍了目前该领域的问题和改进发展情况。

材料

电子信息时代使对移动电源的需求快速增长。由于锂离子电池具有高电压、高容量的重要优点,且循环寿命长、安全性能好,使其在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景,成为近几年广为关注的研究热点。锂离子电池的机理一般性分析认为,锂离子电池作为一种化学电源,指分别用两个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。锂离子电池是物理学、材料科学和化学等学科研究的结晶。锂离子电池所涉及的物理机理,目前是以固体物理中嵌入物理来解释的,嵌入(intercalation)是指可移动的客体粒子(分子、原子、离子)可逆地嵌入到具有合适尺寸的主体晶格中的网络空格点上。电子输运锂离子电池的正极和负极材料都是离子和电子的混合导体嵌入化合物。电子只能在正极和负极材料中运动[4][5][6]。已知的嵌入化合物种类繁多,客体粒子可以是分子、原子或离子.在嵌入离子的同时,要求由主体结构作电荷补偿,以维持电中性。电荷补偿可以由主体材料能带结构的改变来实现,电导率在嵌入前后会有变化。锂离子电池电极材料可稳定存在于空气中与其这一特性息息相关。嵌入化合物只有满足结构改变可逆并能以结构弥补电荷变化才能作为锂离子电池电极材料。

控制锂离子电池性能的关键材料——电池中正负极活性材料是这一技术的关键,这是国内外研究人员的共识。

1 正极材料的性能和一般制备方法

正极中表征离子输运性质的重要参数是化学扩散系数,通常情况下,正极活性物质中锂离子的扩散系数都比较低。锂嵌入到正极材料或从正级材料中脱嵌,伴随着晶相变化。因此,锂离子电池的电极膜都要求很薄,一般为几十微米的数量级。正极材料的嵌锂化合物是锂离子电池中锂离子的临时储存容器。为了获得较高的单体电池电压,倾向于选择高电势的嵌锂化合物。正极材料应满足:

1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;

2)温和的电极过程动力学;

3)高度可逆性;

4)全锂化状态下在空气中的稳定性。

研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物及复合两种M(M为Co,Ni,Mn,V等过渡金属离子)的类似电极材料上。作为锂离子电池的正极材料,Li+离子的脱嵌与嵌入过程中结构变化的程度和可逆性决定了电池的稳定重复充放电性。正极材料制备中,其原料性能和合成工艺条件都会对最终结构产生影响。多种有前途的正极材料,都存在使用循环过程中电容量衰减的情况,这是研究中的首要问题。已商品化的正极材料有Li1-xCoO2(0<x<0.8),Li1-xNiO2(0<x<0.8),LiMnO2[7][8]。它们作为锂离子电池正极材料各有优劣。锂钴氧为正极的锂离子电池具有开路电压高,比能量大,循环寿命长,能快速充放电等优点,但安全性差;锂镍氧较锂钴氧价格低廉,性能与锂钴氧相当,具有较优秀的嵌锂性能,但制备困难;而锂锰氧价格更为低廉,制备相对容易,而且其耐过充安全性能好,但其嵌锂容量低,并且充放电时尖晶石结构不稳定。从应用前景来看,寻求资源丰富、价廉、无公害,还有在过充电时对电压控制和电路保护的要求较低等优点的,高性能的正极材料将是锂离子电池正极材料研究的重点。国外有报道LiVO2亦能形成层状化合物,可作为正极电极材料[9]。从这些报道看出,虽然电极材料化学组成相同,但制备工艺发生变化后,其性能改变较多。成功的商品化电极材料在制备工艺上都有其独到之处,这是国内目前研究的差距所在。各种制备方法优缺点列举如下。

1)固相法一般选用碳酸锂等锂盐和钴化合物或镍化合物研磨混合后,进行烧结反应[10]。此方法优点是工艺流程简单,原料易得,属于锂离子电池发展初期被广泛研究开发生产的方法,国外技术较成熟;缺点是所制得正极材料电容量有限,原料混合均匀性差,制备材料的性能稳定性不好,批次与批次之间质量一致性差。

2)络合物法用有机络合物先制备含锂离子和钴或钒离子的络合物前驱体,再烧结制备。该方法的优点是分子规模混合,材料均匀性和性能稳定性好,正极材料电容量比固相法高,国外已试验用作锂离子电池的工业化方法,技术并未成熟,国内目前还鲜有报道。

3)溶胶凝胶法利用上世纪70年代发展起

来的制备超微粒子的方法,制备正极材料,该方法具备了络合物法的优点,而且制备出的电极材料电容量有较大的提高,属于正在国内外迅速发展的一种方法。缺点是成本较高,技术还属于开发阶段[11]。

4)离子交换法Armstrong等用离子交换法制备的LiMnO2,获得了可逆放电容量达270mA·h/g高值,此方法成为研究的新热点,它具有所制电极性能稳定,电容量高的特点。但过程涉及溶液重结晶蒸发等费能费时步骤,距离实用化还有相当距离。

正极材料的研究从国外文献可看出,其电容量以每年30~50mA·h/g的速度在增长,发展趋向于微结构尺度越来越小,而电容量越来越大的嵌锂化合物,原材料尺度向纳米级挺进,关于嵌锂化合物结构的理论研究已取得一定进展,但其发展理论还在不断变化中。困扰这一领域的锂电池电容量提高和循环容量衰减的问题,已有研究者提出添加其它组分来克服的方法[12][13][14][15][16][17]。但就目前而言,这些方法的理论机理并未研究清楚,导致日本学者Yoshio.Nishi认为,过去十年以来在这一领域实质进展不大[1],急须进一步地研究。

2 负极材料的性能和一般制备方法

负极材料的电导率一般都较高,则选择电位尽可能接近锂电位的可嵌入锂的化合物,如各种碳材料和金属氧化物。可逆地嵌入脱嵌锂离子的负极材料要求具有:

1)在锂离子的嵌入反应中自由能变化小;

2)锂离子在负极的固态结构中有高的扩散率;

3)高度可逆的嵌入反应;

4)有良好的电导率;

5)热力学上稳定,同时与电解质不发生反应。

研究工作主要集中在碳材料和具有特殊结构的其它金属氧化物。石墨、软碳、中相碳微球已在国内有开发和研究,硬碳、碳纳米管、巴基球C60等多种碳材料正在被研究中[18][19][20][21][22][23]。日本Honda Researchand Development Co.,Ltd的K.Sato等人利用聚对苯撑乙烯(Polyparaphenylene——PPP)的热解产物PPP-700(以一定的加热速度加热PPP至700℃,并保温一定时间得到的热解产物)作为负极,可逆容量高达680mA·h/g。美国MIT的MJMatthews报道PPP-700储锂容量(Storagecapacity)可达1170mA·h/g。若储锂容量为1170mA·h/g,随着锂嵌入量的增加,进而提高锂离子电池性能,笔者认为今后研究将集中于更小的纳米尺度的嵌锂微结构。几乎与研究碳负极同时,寻找电位与Li+/Li电位相近的其他负极材料的工作一直受到重视。锂离子电池中所用碳材料尚存在两方面的问题:

1)电压滞后,即锂的嵌入反应在0~0.25V之间进行(相对于Li+/Li)而脱嵌反应则在1V左右发生;

2)循环容量逐渐下降,一般经过12~20次循环后,容量降至400~500mA·h/g。

理论上的进一步深化还有赖于各种高纯度、结构规整的原料及碳材料的制备和更为有效的结构表征方法的建立。日本富士公司开发出了锂离子电池新型锡复合氧化物基负极材料,除此之外,已有的研究主要集中于一些金属氧化物,其质量比能量较碳负极材料大大提高。如SnO2,WO2,MoO2,VO2,TiO2,LixFe2O3,Li4Ti5O12,Li4Mn5O12等[24],但不如碳电极成熟。锂在碳材料中的可逆高储存机理主要有锂分子Li2形成机理、多层锂机理、晶格点阵机理、弹性球-弹性网模型、层-边端-表面储锂机理、纳米级石墨储锂机理、碳-锂-氢机理和微孔储锂机理。石墨,作为碳材料中的一种,早就被发现它能与锂形成石墨嵌入化合物(Graphite Intercalation Compounds)LiC6,但这些理论还处于发展阶段。负极材料要克服的困难也是一个容量循环衰减的问题,但从文献可知,制备高纯度和规整的微结构碳负极材料是发展的一个方向。

一般制备负极材料的方法可综述如下。

1)在一定高温下加热软碳得到高度石墨化的碳;嵌锂石墨离子型化合物分子式为LiC6,其中的锂离子在石墨中嵌入和脱嵌过程动态变化,石墨结构与电化学性能的关系,不可逆电容量损失原因和提高方法等问题,都得到众多研究者的探讨。2)将具有特殊结构的交联树脂在高温下分解得到的硬碳,可逆电容量比石墨碳高,其结构受原料影响较大,但一般文献认为这些碳结构中的纳米微孔对其嵌锂容量有较大影响,对其研究主要集中于利用特殊分子结构的高聚物来制备含更多纳米级微孔的硬碳[25][26][27]。

3)高温热分解有机物和高聚物制备的含氢碳[28][29]。这类材料具有600~900mA·h/g的可逆电容量,因而受到关注,但其电压滞后和循环容量下降的问题是其最大应用障碍。对其制备方法的改进和理论机理解释将是研究的重点。

4)各种金属氧化物其机理与正极材料类似[24],

也受到研究者的注意,研究方向主要是获取新型结构或复合结构的金属氧化物。

5)作为一种嵌锂材料,碳纳米管、巴基球C60等也是当前研究的一个新热点,成为纳米材料研究的一个分支。碳纳米管、巴基球C60的特殊结构使其成为高电容量嵌锂材料的最佳选择[22][23][30]。从理论上说,纳米结构可提供的嵌锂容量会比目前已有的各种材料要高,其微观结构已被广泛研究并取得了很大进展,但如何制备适当堆积方式以获得优异性能的电极材料,这应是研究的一个重要方向[31][32][33]。

3 结语

综上所述,近年来锂离子电池中正负极活性材料的研究和开发应用,在国际上相当活跃,并已取得很大进展。材料的晶体结构规整,充放电过程中结构不发生不可逆变化是获得比容量高,循环寿命长的锂离子电池的关键。然而,对嵌锂材料的结构与性能的研究仍是该领域目前最薄弱的环节。锂离子电池的研究是一类不断更新的电池体系,物理学和化学的很多新的研究成果会对锂离子电池产生重大影响,比如纳米固体电极,有可能使锂离子电池有更高的能量密度和功率密度,从而大大增加锂离子电池的应用范围。总之,锂离子电池的研究是一个涉及化学、物理、材料、能源、电子学等众多学科的交叉领域。目前该领域的进展已引起化学电源界和产业界的极大兴趣。可以预料,随着电极材料结构与性能关系研究的深入,从分子水平上设计出来的各种规整结构或掺杂复合结构的正负极材料将有力地推动锂离子电池的研究和应用。锂离子电池将会是继镍镉、镍氢电池之后,在今后相当长一段时间内,市场前景最好、发展最快的一种二次电池。

电池的分类有不同的方法其分类方法大体上可分为三大类
第一类:按电解液种类划分包括:碱性电池,电解质主要以氢氧化钾水溶液为主的电池,如:碱性锌锰电池(俗称碱锰电池或碱性电池)、镉镍电池、氢镍电池等;酸性电池,主要以硫酸水溶液为介质,如铅酸蓄电池;中性电池,以盐溶液为介质,如锌锰干电池(有的消费者也称之为酸性电池)、海水激活电池等;有机电解液电池,主要以有机溶液为介质的电池,如锂电池、锂离子电池待。

第二类:按工作性质和贮存方式划分包括:一次电池,又称原电池,即不能再充电的电池,如锌锰干电池、锂原电池等;二次电池,即可充电电池,如氢镍电池、锂离子电池、镉镍电池等;蓄电池习惯上指铅酸蓄电池,也是二次电池;燃料电池,即活性材料在电池工作时才连续不断地 从外部加入电池,如氢氧燃料电池等;贮备电池,即电池贮存时不直接接触电解液,直到电池使用时,才加入电解液,如镁-氯化银电池又称海水激活电池等。

第三类:按电池所用正、负有为材料划分包括:锌系列电池,如锌锰电池、锌银电池等;镍系列电池,如镉镍电池、氢镍电池等;铅系列电池,如铅酸电池等;锂系列电池、锂镁电池;二氧化锰系列电池,如锌锰电池、碱锰电池等;空气(氧气)系列电池,如锌空电池等

充电电池定义
充电电池又称:蓄电池、二次电池,是可以反复充电使用的电池。常见的有:铅酸电池(用于汽车时,俗称“电瓶”)、镉镍电池、氢镍电池、锂离子电池。

电池的额定容量
电池的额定容量指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20±5℃环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量。单位有Ah, mAh (1Ah=1000mAh)


如何正确使用锂离子电池?
正确使用锂离子电池应注意以下几点:
避免在严酷条件下使用,如:高温、高湿度、夏日阳光下长时间暴晒等,避免将电池投入火中;
装、拆电池时,应确保用电器具处于电源关闭状态;使用温度应保持在-20~55℃之间;
避免将电池长时间“存放”在停止使用的用电器具中;

这里说的是电子对偏向氧化剂中显氧化性的元素,即降价元素,电子对并不是偏向哪种物质,而是在还原产物中的电子对偏向来自氧化物的原子。举个例子:2H2+O2==2H2O.水中的电子对是偏向氧原子的,即来自氧化物的,显氧化性的原子。


#符些静# 1.例举分子中含有18个电子的物质2.例举分子中含有14个电子的物质3.例举分子中含有10个电子的物质 - 作业帮
(19262476638):[答案] 分子中含有十八个电子的物质:HCl氯化氢,H2S硫化氢,PH3三氢化磷,SiH4四氢化硅,F2氟气,H2O2,C2H6,CH3OH,N2H4等 十四电子物质:N2氮气 十电子物质:H2O水,HF氟化氢,NH3氨气,CH4甲烷,Ne氖等

#符些静# 高一化学必修二元素周期表中10电子结构和18电子结构 -
(19262476638): 10电子结构:Ne N3−、O2−、F−、Na+、Mg2+、Al3+、HF OH−、 H2O NH2− NH3 H3O+ CH4 NH4+ 18电子结构:Ar K+、Ca2+、Cl‾、S2− F2、HCl HS− H2S PH3、H2O2 SiH4、CH3F N2H4、CH3OH

#符些静# 谁知道10电子和18电子化合物的全部物质 - 作业帮
(19262476638):[答案] 10电子:Ne HF H2O NH3 CH4 18电子:Ar HCl H2S PH3 SiH4 F2 H2O2 C2H6 CH3OH N2H4

#符些静# 有10个电子的微粒有哪些?有18个电子的微粒有哪些? -
(19262476638): 10电子微粒: 一核:Ne、N(3-)、O(2-)、F-、Na+、Mg(2+)、Al(3+) 二核:HF、OH- 三核:H2O、NH2(-) 四核:NH3、H3O+ 五核:CH4、NH4(+) 18电子微粒: 一核:Ar、K+、Ca(2+)、Cl-、S(2-) 二核:F2、HCl、HS- 三核:H2S 四核:PH3、H2O2 五核:SiH4 六核:N2H4

#符些静# (1)写出具有10个电子 两个或两个以上原子核的离子符号__________、__________、__________.ؤ (2)写出具有18个电子的无机化合物的化学式________... - 作业帮
(19262476638):[答案] 解析:第二周期非金属元素的氢化物具有10个电子,其分子结合1个H+或失去1个H+,都不会影响离子的电子数.同理第三周期元素的氢化物具有18个电子.ؤ答案:(1) OH- H3O+ؤ(2) H2S PH3 SiH4 HClؤ(3)、SiH4 H3O+、PH3

#符些静# 【急!】 写出含18个电子的阳离子,阴离子 写出含18个电子的化合物分子 写出含18个电子的单质分子 - 作业帮
(19262476638):[答案] K^+ Ca^2+ S^2- Cl^- H2S HCl F2

#符些静# (6分)写出下列各粒子的化学式(1)由2个原子组成的具有10个电子的分子 &nb... -
(19262476638): HF OH — NH 3 H 3 O + H 2 S NH 4 + 考查常见的10电子或18电子微粒.首先确定10电子和18电子的中性原子Ne和Ar,然后找出比它们多或少电子的原子转化成阴、阳离子或氢化物分子.(1)具有10电子的原子是Ne原子. (2)其它10电子微粒一...

#符些静# 写出由5个原子组成,具有10个质子和10个电子的微粒的电子式. -
(19262476638): 是CH4 H 电子式: .. H: C : H .. H 含10个电子的非单质化合物分子的电子式. HF、H2O、NH3 电子式: .. .. .. H: F : H: O : H H: N : H .. .. .. H 写出含10个电子,5个原子核的阳离子电子式. 是NH4+ H 电子式: .. + [H: N :H] .. H

#符些静# 写出下列各粒子的化学式(1)由2个原子组成的具有10个电子的分子 - ---- - 阴离子是------(2)由4个原子 -
(19262476638): (1)由2个原子组成的具有10个电子的分子为HF,阴离子是OH-;故答案为:HF;OH-;(2)由4个原子组成的具有10个电子的分子是NH3,阳离子是H3O+;故答案为:NH3;H3O+;(3)由3个原子组成的具有18个电子分子是H2S;故答案为:H2S;(4)由5个原子组成的具有10个电子的阳离子是NH4+;故答案为:NH4+;

#符些静# 化学元素推理题 -
(19262476638): ①因为A、B离子的电子层数相同,在电子总数为30的A2B型离子化合物中,每个离子的电子数为10个,故可推知A是Na,B是O.②因为4个原子核、10个电子形成的分子中,每个原子平均不到3个电子,所以只好从原子序数1~8的元素中寻找.L已有3个电子,可知一定含有氢原子,分子只有4个原子核共10个电子,一定是NH3.原子序数D>E,故D为N,E为H.③C与A(Na)同周期,与B(O)同主族,所以C位于第三周期ⅥA族,为S.所以: 钠 氧 硫 氮 氢