高一物理经典例题 高一物理力学经典例题及解析与答案

www.zhiqu.org     时间: 2024-05-20
追及和相遇问题求解方法和典型例题
追及、相碰是运动学中研究同一直线上两个物体运动时常常涉及的两类问题,也是匀速直线运动规律在实际问题中的具体应用。
1、 追及、相碰的特征
追及的主要条件是两个物体在追赶上时处在同一位置,常见的情形有三种:
一是初速度为零的匀加速运动的物体甲追赶同方向的匀速的物体乙时,一定能追上,在追上之前两者有最大距离的条件是两物体速度相等,即V甲=V乙。
二是匀速运动的物体甲追赶同方向做匀加速运动的物体乙时,存在一个恰好追上或恰好追不上的临界条件是两物体速度相等,即V甲=V乙。此临界条件给出了一个判断此中追赶情形能否追上的方法,即可通过比较两物体处在同一位置时的速度大小来分析,具体方法是:假定在追赶过程中两者能处在同一位置,比较此时的速度大小,若V甲>V乙,则能追上,若V甲<V乙,则追不上,如果始终追不上,当两物体速度相等时,两物体的间距最小。
三是匀减速运动的物体追赶同方向的匀速运动的物体时,情形跟第二种相类似。
两物体恰能“相碰”的临界条件是两物体处在同一位置时,两物体的速度恰好相等
2、解“追及”、相碰问题的思路:
解题的基本思路是:
一.根据两物体运动过程的分析,画出物体运动的示意图。
二.根据两物体的运动性质,分别列出两物体的位移方程。注意要将两物体运动时间的关系反映在方程中。
三.由运动示意图找出两物体位移的关联方程。
四.联立方程求解。
3、 分析追及、相碰问题应注意:
一.分析追及、相碰问题时,一定要抓住一个条件,两个关系:一个条件是两个物体的速度满足的临界条件,如两物体距离最大、最小、恰好追上或恰好追不上等。两个关系:时间关系和位移关系。其中通过画草图找到两物体位移之间的数量关系,是解题的突破口。因此,在学习中一定要养成画草图分析问题的良好习惯。
二.若被追赶的物体做匀减速运动,一定要注意追上前该物体是否停止运动。
三.仔细审题,注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件。如“刚好”“恰好”“最多”“至少”等,往往对应一个临界状态,满足相应的临界条件。
四.解决追及和相碰问题大致分为两种方法,即数学方法和物理方法。求解过程中可以有不同的思路,例如:考虑图像法等等。

总结:追及问题:
思路一:利用速度相等时相距最近或最远求解。
思路二:建立位移关系表达式求解。
(1) 有解可解出时间,注意符合实际情况。
(2) 无解说明追不上或不相撞,可根据数学知识求最近或最远距离。

1、一辆值勤的警车停在公路边,当警员发现从他旁边以8m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经2.5s,警车发动起来,以加速度2m/s2做匀加速运动。
试问:(1)警车要多长时间才能追上货车?
(2)在警车追上货车之前,两车间的最大距离是多少?

例2、一列车的制动性能经测定,当它以标准速度20m/s在水平轨道上行驶时,制动后需40s才停下,现这列车正以20m/s的速度在水平轨道上行驶,司机发现前方180m处一货车正以6m/s的速度同向行驶,于是立即制动,问是否会发生撞车事故?

例3、如图1-5-9所示,在某市区,一辆小汽车在平直公路上向东匀速行驶,一位游客正由南向北从斑马线上横穿马路,司机发现前方有危险(游客在D处),经0.7s作出反应,在A处紧急刹车,仍将正步行至B处的游客撞伤,汽车最终停在C处,为了解现场,警方派一警车以法定最高速度vm=14m/s,行驶在同一路段,该警车运动的加速度和肇事车辆的加速度相同,在肇事汽车的起始制动点A紧急刹车,经14m后停下来,现测得AB=17.5m、BC=14m、BD=2.6m,问:(1)肇事汽车的初速度是多大?(2)游客横穿马路的速度是多大?

例4、两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均是V,若前车忽然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车,已知前车在刹车过程中所行的距离是S,若保持两车在上述情况下不相撞,则两车在匀速运动时保持的距离至少应是: ( )
A、A、1S B、2S C、3S D、4S
例5、 甲、乙两车从同一地点出发同向运动,其 图像如图1-2-1所示.试计算:
(1)从乙车开始运动多少时间后两车相遇?
(2)相遇处距出发点多远?
(3)相遇前两车的最大距离是多少?

例6、 甲、乙两车同时同地同向出发,在同一水平公路上做直线运动,甲以初速度 ,加速度 做减速运动,乙以初速度 ,加速度 做匀加速运动.求:(1)两车再次相遇前二者间的最大距离;
(2)两车再次相遇所需时间.
6.火车A以速度v1匀速行驶,司机发现正前方同一轨道上相距s处有另一火车B沿同方向以速度v2(对地,且v2〈v1〉做匀速运动,A车司机立即以加速度(绝对值)a紧急刹车,为使两车不相撞,a应满足什么条件?

例7.摩托车在平直公路上从静止开始起动,a1=1.6m/s2,稍后匀速运动,然后减速,a2=6.4m/s2,直到停止,共历时130s,行程1600m。试求:
(1) 摩托车行驶的最大速度vm;
(2) 若摩托车从静止起动,a1、a2不变,直到停止,行程不变,所需最短时间为多少?
例8 汽车正以10m/s的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s2的匀减速运动,汽车恰好不碰上自行车、求关闭油门时汽车离自行车多远?
例9.甲、乙两车在同一条平直公路上运动,甲车以10 m/s 的速度匀速行驶,经过车站A时关闭油门以4m/s2的加速度匀减速前进,2s后乙车与甲车同方向以1m/s2的加速度从同一车站A出发,由静止开始做匀加速运动,问乙车出发后多少时间追上甲车?
例10.飞机起飞时相对静止空气的速度为60m/s,航空母舰以20m/s的速度向东航行,停在航空母舰上的飞机也向东起飞,飞机的加速度为4m/s2.则飞机起飞时间为多少?跑道至少要多长?
例11.驾驶手册规定具有良好刹车性能的汽车在以80m/s的速率行驶时,可以在56m的距离内被刹住;在以48m/s的速率行驶时,可以在24m的距离内被刹住.假设对这两种速率,驾驶员所允许的反应时间与刹车的加速度都相同,则允许驾驶员的反应时间约为多少?
例12.一列火车进站前先关闭气阀,让车减速滑行.滑行了300m时速度减为关闭气阀时的一半,此后又继续滑行了20s停在车站.设火车在滑行过程中加速度始终维持不变,试求:
  (1)从火车关闭气阀到停止滑行时,滑行的总位移;
  (2)火车滑行的加速度;
(3)火车关闭气阀时的速度.
例13.一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过,求:
  (1)汽车从开始启动后在追上自行车之前经多少时间后两者相距最远?此时距离是多少?
  (2)什么时候追上自行车,此时汽车的速度是多少?
例14.汽车以10m/s的速度前进时,突然发现前方30m远处一辆自行车正以4m/s的速度同向匀速前进,汽车随即刹车,为保证汽车不碰到自行车,试求汽车刹车的最小加速度.
例15.某市规定,卡车在市区内行驶速度不得超过40km/h.现有一辆卡车在市区路面紧急刹车后,经1.5s停止,量得刹车痕迹长s=9m.问该车是否违章?假定卡车刹车后做匀减速运动,可知其行驶速度达到多少?

求高一物理经典例题~

汽车从静止开始以a做匀加速运动,速度达到v时,接着做加速大小为a2,做匀减速到静止

,运动到静止求 匀加速运动、匀减速运动的平均速度V=(V初+V末)/2,
做匀加速运动时V初=0,V末=v 做匀减速运动时V末=0,V初=v
所以V1比V2=1:1
然,你所说的可能发生,但是这时小车受圆柱体的摩擦力作用,要维持匀速运动,晕,一个方块放在一平面上,受到重力,平面的支持力,二者平衡;放在斜面上的话,重力,向斜面斜下的拉力,垂直斜面的支持力,摩擦力,摩擦力方向与拉力方向相反,四者平衡,重力分解为拉力跟对斜面的压力,斜面提供支持力并产生摩擦力。

一般是斜面物体受力比较经典,五年前学的东西了,没想到还能记得 必定要受外力。取小车和圆柱体的接触面作力矩分析结果和无滑动是一致的,所以这种情况下肯定不是最小力。(我猜的,礼拜一再问一下导师去)
1)中:此时,摩擦力如果不为零,产生的摩擦力会使力矩不平衡而导致圆柱体继续加快旋转,从而带动小车,这时不需要添加水平力来维持小车运动。做匀加速运动时间t1=V/a,做匀减速运动时间t2=V/a2,s=t*V平
平均速度相同,所以s1:s2=t1:t2=V/a:V/a2

平均速度比V1比V2 时间之比t1;t2 位移之比s1;s2汽车从静止开始以a做匀加速运动,速度达到v时,接着做匀加速大小为a的匀减速运动,运动到静止求

平均速度比V1比V2 时间之比t1;t2 位移之比s1;s2
问题补充:正确的题目 - -


汽车从静止开始以a做匀加速运动,速度达到v时,接着做加速大小为a2,做匀减速到静止

,运动到静止求

平均速度比V1比V2 时间之比t1;t2 位移之比s1;s2汽车从静止开始以a做匀加速运动,速度达到v时,接着做匀加速大小为a的匀减速运动,运动到静止求

平均速度比V1比V2 时间之比t1;t2 位移之比s1;s2
问题补充:正确的题目 - -


汽车从静止开始以a做匀加速运动,速度达到v时,接着做加速大小为a2,做匀减速到静止

,运动到静止求

平均速度比V1比V2 时间之比t1;t2 位移之比s1;s2∵物体的加速度恒定,
∴平均速度V=v-0/t
∴V1=v/t1,V2=v/t2,∴V1:V2=1:2
∴平均速度比V1:V2为1:2,时间之比t1;t2为2:1,位移之比s1;s2为2:1.∵物体的加速度恒定,
∴平均速度V=v-0/t
∴V1=v/t1,V2=v/t2,∴V1:V2=1:2
∴平均速度比V1:V2为1:2,时间之比t1;t2为2:1,位移之比s1;s2为2:1.∵物体的加速度恒定,
∴平均速度V=v-0/t
∴V1=v/t1,V2=v/t2,∴V1:V2=1:2
∴平均速度比V1:V2为1:2,时间之比t1;t2为2:1,位移之比s1;s2为2:1.∵物体的加速度恒定,
∴平均速度V=v-0/t
∴V1=v/t1,V2=v/t2,∴V1:V2=1:2
∴平均速度比V1:V2为1:2,时间之比t1;t2为2:1,位移之比s1;s2为2:1.1.一台拖拉机的额定功率为1.5x10^4W,运动中阻力为1.0x10^3N,它的最大行驶速度是多少?如果它以5m/s的速度匀速行驶时,发动机消耗的实际功率为多大?

2起重机以不变的功率P=10kw,将地面上质量为500kg的物体由静止向上吊起h=2m,达到最大速度。求:最大速度;由静止到达最大速度所用的时间。

1.最大行驶速度=功率÷阻力=15m/s
实际消耗功率=速度×阻力=5×10^3W
2.最大速度=功率÷重力=2m/s
输出功率×时间=物体增加的能量=重力势能+动能
=500×10×2+500×2方÷2=11000J
张大同 高一物理教程上的一道题 老师都不会 帮帮忙
大家千万帮帮忙啊 我想了快四个小时了
第二章 力和物体平衡 最后一道例题
疑问有两点
1) 为什么圆柱不能与车和墙同时滑动 ?(如果车速大于圆柱转动速度时,两者相对滑动)
2) 当圆柱与车无相对滑动与墙有相对滑动 即书中讨论的情况(1)时 小车受外力为零 但匀速运动 则车与圆柱之间无摩擦且体中又推得与墙和与车摩擦力相等从而与墙摩擦力为零 如果这样那么推得墙与圆柱无压力 这是无法实现的啊 解释一下是怎么回事啊
大家帮帮忙解释以下 感激不尽
问题补充:同时滑动 不一定要平动啊 因为车速大于转速时 圆柱顺时针转动 与车为滑动 与墙当然也是滑动啊 为什么不行呢?所以时间=11000÷10000=1.1s1、关于匀速直线运动,下面说法中正确的是( )
A、速度和运动时间成正比
B、速度的增量与运动时间的平方成正比
C、位移与运动时间的平方成正比
D、相同时间间隔内的位移增量都相同



2、作匀加速直线运动的物体,先后经过A、B两点时的速度分别为v和7v,经历的时间为t,则( )
A、前半程速度增加3.5v B、前t/2时间内通过的位移为33vt/12

C、后t/2时间内通过的位移为33vt/12 D、后半程速度增加3.5v



3、物体从斜面顶端由静止开始滑下,经t秒到达中点,则物体从斜面顶端到底端共用时间为( )



4、一个物体从某一高度做自由落体运动,已知它第一秒内的位移恰为它最后一秒内位移的一半,g取10m/s2,则它开始下落时距地面的高度为 。军训以来,病了一小段时间,一个星期的旷课耽误了些课程。

物理比我想象中要难自学,所以,我想要高一物理:匀速直线运动这一章的知识例题、题目[带讲解]。题数越多越好,部分题目要有一定的难度。
你把公式记住了
把学校发的书做完了
就基本上行了
匀加速直线运动最基本公式
V末-V初=at

S=0.5at^2+V0t
2aS=V末^2-V初^2

重力为600N的木箱置于水平地面上,木箱与地面的动摩擦因数为0.4,(1)当用与水平方向成30度角斜向上的拉力拉木箱匀速前进时;(2)当用与水平方向成30度角斜向下的推力推木箱匀速前进时。两次用力的大小各为多少?
1.G=600N , u=0.4
正压力N=G-F*sin30`=G-F/2
摩擦力f=u*N
匀速前进,f=F*cos30`
u*(G-F/2)=F*√3/2
0.4*(600-F/2)=F*√3/2
F=2400/(5√3+2)N=225.1N

2.N=G+F*sin30`=G+F/2
摩擦力f=u*N
匀速前进,f=F*cos30`
u*(G+F/2)=F*√3/2
0.4*(600+F/2)=F*√3/2
F=2400/(5√3-2)N=360.4N







2.一质点由静止起受力F1作用加速运动,经时间t后,将力F1撤去,立即加上与F1反向的力F2,再经时间t,质点恰返回出发点,求F1与F2的比值.
有F1作用的过程中:
路程S1=1/2*a1*t^2
a1=F1/M
可得路程S1=(F1*t^2)/(2m)----------[1]

F2作用,到回到起始点的过程中:
a2=F2/m

位移S2=Vo*t+1/2*a2*t^2
Vo就是撤掉F1时的速度,Vo=a1*t=F1*t/m
因为S2是位移公式,设以F2的方向为正方向
有S2=-Vo*t+1/2*a2*t^2----------[2]


又S2大小=S1大小
即[1]=[2]
可得结果F1:F2=1:3








3.一轻质量弹簧上端固定,下端挂一重物,平衡时弹簧生长了4厘米,再将重物向下拉1厘米,然后放手,则在刚释放时的瞬间,求重物的加速度(g取10m/s^2)

2.5m/s^2,方向向上。
弹簧生长了4厘米时弹力正好等于物体自重。
而再在此基础上多伸长1厘米后,物体受到的合力就等于1/4的自重,所以
a=(1/4 mg)/m=1/4g=2.5m/s^2







4.一个做匀减速运动的质点,它在第一个2秒内和第二个2秒内通过的位移分别为18米和14米,求:

(1)质点的加速度和初速度。
(2)质点经多少时间停下来?

用中间时刻速度,也就是平均速度解决
有18/2=9,是第一秒的速度(因为匀减速),14/2=7是第三秒速度(同样的原因,如果楼主还是不清楚请留言给我)
然后有(9-7)/2=1,加速度就是1
初速度就是9+1=10
时间就是10







5.一物体静止在斜面上,当斜面的倾角逐渐增大而物体仍然静止在斜面上时
A。物体所受的重力和静摩擦力的合力逐渐增大
B。物体所受的重力和支持力的合力逐渐增大
C。物体所受的支持力和静摩擦力的合力逐渐增大
D。物体所受的重力,支持力和静摩擦力的合力逐渐增大
分析:
物体静止在斜面上受到3个力的作用:重力,支持力,静摩擦力。
任意两个力的合力必定与第3个力等大反向。

A.该命题等价于物体所受的支持力逐渐增大。(重力、静摩擦力合力大小与支持力大小相同)。支持力N=mgcosα,根据数学知识,倾角变大,N应当越来越小。

B.该命题等价于静摩擦力逐渐增大。根据受力平衡得出,f=mgsinα。同样根据数学知识,可以得出静摩擦力确实越来越大。

C.该命题等价于重力越来越大。显然是错误的。

D.物体受力平衡。合力始终应当为0。










6.如图所示,某搬运工人用水平力F 拖着一尾端放有一木箱的平板以1m/s的速度匀速运动,已知木箱和平板的质量都是50kg,木箱、平板、地面之间的摩擦系数都为μ=0.1;某时刻搬运工人突然将水平力增大了20N,并保持该力不变,木箱立即从水平板尾端滑落,当工人发现木箱落地后已经前进了6秒,此时木板尾端与木箱间的距离为多少?不计平板厚度,木箱可视为质点,g=10m/s2)
由于该物体做匀速运动
`所以物体受力平衡,F=f摩=ц(M+m)g=100N
`工人突然加力后,木箱掉落,此时只受摩擦力
`f=цmg=50N,a=F/m=1m/s^2(方向与运动方向相反)
`当木箱停止运动后,不受摩擦力,所以不反向运动
`可求得运动时间为v=vo - at 得 t=1s
`所以木箱的位移为S2=vot - 1/2at^2 =0.5m
`木板所受的拉力为 F拉=100 + 20 =120N
`f摩=цMg=50N,方向与F拉相反
`所以木板所受合外力为 F合=120-50=70N,a=F/m=1.4m/s^2
`位移S1=vot + 1/2at^2 =31.2m
`所以两物体相差距离为 S1-S2=31.2-0.5=30.7m 。









7.一物体静止在光滑斜面上,当F沿什么方向时F最小,最小值为多大?F是人为给物体施加的力。

令F和斜面的夹角为α,斜面和水平面的夹角为θ.物体质量为m。

∵在斜面方向上受力平衡,

∴mg·Sinθ=F·Cosα

∴F=(mg·Sinθ)/Cosα

Cosα最大为1,即α=0°时:F最小,

此时F=mg·Sinθ
















8.一木块静止在水平桌面上,已知木块重G=20,木块与桌面间的动摩擦因数u=0.4,且木块与桌面的最大静摩擦力等于滑动摩擦力.
问:木块在桌面上滑动后,使水平拉力变为6N,木块受到的摩擦力是多大?(高一物理题)
由1可知

块重G=20 * 动摩擦因数u=0.4, = 8N

因为 木块与桌面的最大静摩擦力等于滑动摩擦力.

所以用6N拉力去拽 是拽不动的 那么物体静止受力平衡

则有 F拉 = f摩 = 6N

等一下


F =un = 20N * 0.4 = 8N

所以: F(静) = F(动)=8N

因为F(拉)=6N

所以 F(拉)<F(静)

保持平衡

所以:F(摩) = F(拉)=6N



















9.重15N的物体由OP、OM两条绳拉住,OP与竖直方向成θ角,OM保持水平。若OP、OM能承受的最大拉力分别为(10√3)N和15N,问为了保持绳不被拉断,θ角的最大值为多少?

第一步:
分析受力平衡,重物G由于处于平衡状态,所以根据牛三律其不受力或者合外力为0。显然其并非不受力,所以推算其和外力为零。首先其肯定受到重力作用,重力方向竖直向下,大小为15N。同理其便受到一个力,大小为15N,方向与重力相反,即竖直向上。这样这两个力使之处于平衡状态。
第二步:
数值分析,其向上的和重力平衡的力只是来自OP与OM两个力的合力,将其用平行四边形法则进行分解,OM与合力方向垂直,所以其根本不受力,题目中说起承受的最大拉力为15N实际上是迷惑项目,纵使OM承受的最大拉力为0,OM线也不会拉断。(之所以这样,是因为题目中说OM保持水平是理想状态,实际上作为绳子,OM不可能保持水平,总是会有一个角度的,正如我们不考虑空气中浮力一样,题目不要求我们考虑这些,我就把它丢在一边不要考虑)
第三步:
计算,剩下的就剩下三角学里面的计算了,纯数学,没有任何物理知识了,同样用极限法,假设此时OP受到的力为最大值,10√3N ,数值向上的力为15N,计算出
cosθ=15/(10√3)
=√3/2
此时θ=30度,问题得解

















10。一个小球做竖直上抛运动,在到达最高点的最后1秒内上升的高度为小球上升的最大高度的1/6,则小球上升的最大高度和抛出时的初速度各是多大?

此时为到达最高点的最后一秒 最高点时速度为0,如果取g=10,则有最后一秒初速度为10m/s

又mgh=1/2 mv2 (动能定理)
得h=5m

h=1/6H

所以H=30m


#伍薛贾# 高一物理例题 -
(15223011538): 首先 你可以逆向的想 可以想成从0开始加速 反过来想 这样比较容易 匀变速运动 反过来也是一样的 整段速度的平均速度等于 中点时刻的瞬时速度 这样就吧运动分成两个相等的时间都是8秒 因为题中分界点就是 中点时刻 列方程 s=V/2*t+1/2at方 t=8秒 s=120 V/2=at t=8 两个方程解得 v=20 a=1.25 后边求出前半段位移=40 一共就是160 后边比较简单 不写过程了

#伍薛贾# 高一物理力学典型题
(15223011538): B和D,整体法,两物体作匀速运动,则在b和c有摩擦力存在,a和b物体存在不存在滑动摩擦因数就没关系了,两者不存在相对滑动,无力作用,因此u1有可能为0页有可能不为0

#伍薛贾# 高一物理力学经典例题 -
(15223011538): 就是有代表性的题,你可以一类一类的总结 屋檐定时滴出水滴,当第5滴正欲滴下时,第1滴已刚好到达地面,而第3滴与第2滴正分别位于高1m的窗户的上、下沿,问: (1)此屋檐离地面多少m? (2)滴水的时间间隔是多少? 解:设滴水间隔为...

#伍薛贾# 谁有高一物理例题啊 -
(15223011538): 一滑块(可视为质点),通过长度不计的细绳拴在小车上,小车上表面光滑.小车由静止开始向右匀加速运动,经过2s,细绳断裂.细绳断裂后,小车的加速度不变,又经过一段时间,滑块从小车左端掉下,在这段时间内,已知滑块相对小车前3s...

#伍薛贾# 高中物理经典例题 -
(15223011538): 15N 10、关键在于认清该力为静摩擦力,而非滑动摩擦力. 由以上分析可知物体受力可能有三种情况.

#伍薛贾# 高一物理中有关轻杆与铰链例题精析 - 作业帮
(15223011538):[答案] 高一物理力学经典例题及解析与答案,要详细啊 14.(12分)如图14所示的物体,∠ACB=30 ;图(b)中轻杆HG一端用铰链固定在竖直墙上,另一端G

#伍薛贾# 给点高一必修2物理典型例题……~~~!!!!!
(15223011538): 一质量为m=2kg的物体,由1/4光滑圆弧轨道上端从静止开始下滑,到达底端后沿水平面向右滑动1m距离后停止.已知轨道半径R=0.2m,g=10m/s2,求: (1)物体物体滑至圆弧底端时的速度大小 (2)物体物体滑至圆弧底端时,圆弧底端对物体的支持力大小 (3)物体与水平面间的动摩擦因数 〔必修2综合题〕

#伍薛贾# 高一物理经典题 -
(15223011538): 转动时两球的角速度W相等因W=V/R=Va/OA=Vb/OB=Va/(2L)=Vb/LVa=2Vb系统机械能守恒减少的重力势能=增加的动能mg2L-mgL=(1/2)mVa^2+(1/2)mVb^2=(5/2)mVb^2mgL=(5/2)mVb^2转动到竖直位置时B球速度Vb=根号(2gL/5)A球速度Va=2Vb=2根号(2gL/5)

#伍薛贾# 寻高一物理试题(经典题型) -
(15223011538): 1.有三个共点力,F1=2N,F2=3N,F3=5N它们的合力F的大小不可能是:( ) A.0N B.5N C.7N D.12N 2. 下列说法中正确的是( ) A.加速度越大,速度一定越大 B.速度变化越快,加速度一定越大 C.物体的加速度不为零,则速度也不为零 D.加速度...

#伍薛贾# 高一物理!!求高人总结圆周运动,天体万有引力等题的一些经典题型的... -
(15223011538): 圆周运动重要公式F向=mv2/r 和mw2*r,在考虑圆周运动时,关键要分析清楚,究竟是哪个力在提供向心力的作用(或是哪个力的分力在提供向心力),然后再作竖直方向和水平向的受力分析.天体物理中涉及到的典型例子:卫星发射绕地球的运动,特别是同步和变轨卫星的理论研究题,还有就是宇宙飞船的如何实现重力模拟,这里,不同形状的重力模拟也不同.典型的有球形,它的特点是“赤道”大而“两极”为0,另一个是圆柱形饶地面圆心连线转动,在圆柱面里是均匀的.还有在地球上,可以考虑下,为什么在两极的重力大而赤道较小.