稀有气体的化合物 稀有气体化合物的化合物

www.zhiqu.org     时间: 2024-06-07

芬兰赫尔辛基大学的科学家在24日出版的英国《自然》杂志上报告说,他们首次合成了惰性气体元素氩的稳定化合物——氟氩化氢,分子式为HArF。
这样,6种惰性气体元素氦、氖、氩、氪、氙和氡中,就只有原子量最小的氦和氖尚未被合成稳定化合物了。惰性气体可广泛应用于工业、医疗、光学应用等领域,合成惰性气体稳定化合物有助于科学家进一步研究惰性气体的化学性质及其应用技术。
在惰性气体元素的原子中,电子在各个电子层中的排列,刚好达到稳定数目。因此原子不容易失去或得到电子,也就很难与其它物质发生化学反应,因此这些元素被称为“惰性气体元素”。
在原子量较大、电子数较多的惰性气体原子中,最外层的电子离原子核较远,所受的束缚相对较弱。如果遇到吸引电子强的其他原子,这些最外层电子就会失去,从而发生化学反应。1962年,加拿大化学家首次合成了氙和氟的化合物。此后,氡和氪各自的化合物也出现了。
原子越小,电子所受约束越强,元素的“惰性”也越强,因此合成氦、氖和氩的化合物更加困难。赫尔辛基大学的科学家使用一种新技术,使氩与氟化氢在特定条件下发生反应,形成了氟氩化氢。它在低温下是一种固态稳定物质,遇热又会分解成氩和氟化氢。科学家认为,使用这种新技术,也可望分别制取出氦和氖的稳定化合物。
自19世纪末以来,稀有气体元素不能生成热力学稳定化合物的结论给科学家人为地划定了一个禁区,致使绝大多数化学家不愿再涉猎这一被认为是荒凉贫瘠的不毛之地,关于稀有气体化学性质的研究被忽略了。尽管如此,仍有少数化学家试图合成稀有气体化合物。1932年,前苏联的阿因托波夫(A.R.Antropoff)曾报道,他在液体空气冷却器内,用放电法使氪与氯、溴反应,制得了较氯易挥发的暗红色物质,并认为是氪的卤化物。但当有人采用他的方法重复实验时却未获成功。阿因托波夫就此否定了自己的报道,认为所谓氪的卤化物实际上是氧化氮和卤化氢,并非氪的卤化物。1933年,美国著名化学家鲍林(L.Pauling)通过对离子半径的计算,曾预言可以制得六氟化氙(XeF6)、六氟化氪(KrF6)、氙酸及其盐。扬斯特(D.M.Younst)受阿因托波夫的第一个报道和鲍林预言的启发,用紫外线照射和放电法试图合成氟化氙和氯化氙,均未成功。他在放电法合成氟化氙的实验中将氟和氙按一定比例混合后,在铜电极间施以30000伏的电压,进行火花放电,但未能检验出氟化氙的生成。扬斯特由于对传统观念心有余悸,没有坚持继续进行实验,使一个极有希望的方法半途而废。一系列的失败,致使在以后的30多年中很少有人再涉足这一领域。令人遗憾的是,到了1961年,鲍林也否定了自己原来的预言,认为“氙在化学上是完全不反应的,它无论如何都不能生成通常含有共价键或离子键化合物的能力”。
历史的发展颇具戏剧性,就在鲍林否定其预言的第二年,第一个稀有气体化合物——六氟合铂酸氙(XePtF6)竟奇迹般地出现了,并以它独特的经历和风姿震惊了整个化学界,标志着稀有气体化学的建立,开创了稀有气体化学研究的崭新领域。
在加拿大工作的英国年轻化学家巴特列特(N.Bartlett)一直从事无机氟化学的研究。自1960年以来,文献上报道了数种新的铂族金属氟化物,它们都是强氧化剂,其中高价铂的氟化物六氟化铂(PtF6)的氧化性甚至比氟还要强。巴特列特首先用PtF6与等摩尔氧气在室温条件下混合反应,得到了一种深红色固体,经X射线衍射分析和其他实验确认此化合物的化学式为O2PtF6,其反应方程式为:
O2+PtF6→O2PtF6
这是人类第一次制得O+2的盐,证明PtF6是能够氧化氧分子的强氧化剂。巴特列特头脑机敏,善于联想类比和推理。他考虑到O2的第一电离能是1175.7千焦/摩尔,氙的第一电离能是1175.5千焦/摩尔,比氧分子的第一电离能还略低,既然O2可以被PtF6氧化,那么氙也应能被PtF6氧化。他同时还计算了晶格能,若生成XePtF6,其晶格能只比O2PtF6小41.84千焦/摩尔。这说明XePtF6一旦生成,也应能稳定存在。于是巴特列特根据以上推论,仿照合成O2PtF6的方法,将PtF6的蒸气与等摩尔的氙混合,在室温下竟然轻而易举地得到了一种橙黄色固体XePtF6:
Xe+PtF6→XePtF6
该化合物在室温下稳定,其蒸气压很低。它不溶于非极性溶剂四氯化碳,这说明它可能是离子型化合物。它在真空中加热可以升华,遇水则迅速水解,并逸出气体:
2XePtF6+6H2O→2Xe↑+O2↑+2PtO2+12HF
这样,具有历史意义的第一个含有化学键的“惰性”气体化合物诞生了,从而很好地证明了巴特列特的正确设想。1962年6月,巴特列特在英国Proccedings of the Chemical Society杂志上发表了一篇重要短文,正式向化学界公布了自己的实验报告,一下震动了整个化学界。持续70年之久的关于稀有气体在化学上完全惰性的传统说法,首先从实践上被推翻了。化学家们开始改变了原来的观念,摘掉了冠以稀有气体头上名不副实的“惰性”的帽子,拆除了人为的樊篱,很快形成了一个合成和研究新的稀有气体化合物的热潮,开辟了一个稀有气体化学的新天地。
认识上的障碍一旦拆除,更多的稀有气体化合物很快被陆续合成出来。就在同年8月,柯拉森(H.H.Classen)在加热加压的情况下,以1∶5体积比混合氙与氟时,直接得到了XeF4,年底又制得了XeF2和XeF6。氙的氟化物的直接合成成功,更加激发了化学家合成稀有气体化合物的热情。在此后不长的时间内,人们相继又合成了一系列不同价态的氙氟化合物、氙氟氧化物、氙氧酸盐等,并对其物理化学性质、分子结构和化学键本质进行了广泛的研究和探讨,从而大大丰富和拓宽了稀有气体化学的研究领域。到1963年初,关于氪和氡的一些化合物也陆续被合成出来了。至今,人们已经合成出了数以百计的稀有气体化合物,但却仅限于原子序数较大的氪、氙、氡,至于原子序数较小的氦、氖,仍未制得它们的化合物,但有人已从理论上预测了合成这些化合物的可能性。1963年,皮门陶(Pimentaw)等人根据HeF2的电子排布与稳定的HF-2离子相似这一点,提出了利用核反应制备HeF2的3种设想:(1)制取TF-2,再利用氚〔3H(T)〕的β衰变合成HeF2:TF-2→HeF2+β;(2)用热中子辐射LiF,生成HeF2;(3)直接用α粒子轰击固态氟而产生HeF2。但毛姆等人则认为,HeF2和HF-2的电子排布虽然相似,但HF-2可以看成是一个H-跟两个F原子作用成键,H-的电离能仅为22.44千焦/摩尔,而He的电离能却高达 801.5千焦/摩尔,因此是否存在HeF2,在理论上是值得怀疑的,氦能否形成化合物,至今仍是个不解之谜。
稀有气体化合物的制成
1962年6月,英国青年化学家巴特利特发表了合成Xe(PtF6)的简报,使科学界大为震惊,从此打破了人为划定的不存在“稀有气体元素”化合物的禁区,使“稀有气体元素”化学得到了飞跃的发展。至今,已合成了四百多种“稀有体元素”化合物,其中有的并不需要精密的实验设备,如氙和氟的混合气体只需要放在日光下照射,即可生成二氟化氙。
稳定的氙碳化合物首次制成
1989年,联邦德国多特蒙德大学首次制备出一种稳定的氙碳化合物。这种化合物是在乙腈液体中和0 ℃下,使二氟化氙和三(五氯酚氟代苯基)甲硼烷反应生成的。研究人员已用核磁共振装置研究了这种含氙碳键化合物的结构。
低温下稳定的氪氮化合物制备成功。
1988年,加拿大麦克马斯特大学的施陶贝根宣称,他首次制备并表征了含有氪—氮键的化合物。他用二氟化氪(KrF2)和质子化的氢氰酸盐进行反应,把这两种化合物放入氢氟酸中,并以液氮冷却。然后让反应温度缓慢上升,使这两种化合物溶解,并发生相互作用,在约-60 ℃时生成含有氪—氮键的白色固体化合物。这种氪—氮化合物与其他氙同系物相比是相当不稳定的,它似乎不能在高于-50 ℃的温度下存在
在一定条件下,Xe可与F2发生反应,生成三种稳定的Xe的氟化物。XeF2.XeF4和XeF6:
Xe+nF2→XeF2n(n=1.2.3)
其中XeF4在碱性溶液中迅速分解.
6XeF4+12H2O→2XeO3+4Xe+24HF+3O2
XeF6不完全水解,产物为XeOF4
XeF6+3H2O→XeFO4+6HF
Xe的含氧化物除了XeO3,XeOF4外还有XeF4,HXeO4-和(XeO6)4-等
XeO3+OH- →HXeO4-
2HXeO4-+2OH-→(XeO6)4-+Xe+O2+2H2O
三氧化氙【XeO3】是无色、易潮解、易爆炸的晶状固体,可溶于水,在水中以分子状态存在。它在中性和微酸性环境中很稳定,但在碱性环境中它以HXeO4形式存在,且HXeO4不稳定,除氧化分解以外,还发生歧化反应:
2 HXeO4(aq)+2OH(aq)=XeO6(aq)+ Xe(g)+O2(g)+2H2O(l)
ΨXeO3/Xe=+2.10V ΨHXeO4-/Xe=+1.24V
且XeO3还原产物总是氙,因为没有稳定的低价态氧化氙。
氙金属化合物
三氟化金与氙和原子态氢反应,生成了一种新的黑色晶体,经检测发现这种晶体的成分是新的化合物四氙化金。
氯是卤族元素氙为惰性气体,在正常情况下氯和氙是不会发生反应的,在自然界中也不存在氯和氙的化合物,但在高压和强电场作用下氯可以接受氙的一个电子,形成氯化氙分子,氯化氙不稳定维持的时间很短,很快会解离成为氯和氙,这中不稳定的分子称为准分子,由不稳定的氯化氙准分子受激发而发出的波长为308nm的紫外线激光。
氟化氙分三种:二氟化氙,四氟化氙和六氟化氙。他们均为无色晶体,其中二氟化氙熔点为129℃,四氟化氙为113℃,六氟化氙为89℃。XeF2在碱溶液中易被还原成Xe。XeF4则在水中岐化为XeO3+Xe。XeF6则水解成XeO3。氟化氙能被氢气还原为Xe。XeF2能将Cl-变为Cl2,BrO3-变为BrO4-。都可以用氙和氟直接化合生成,也可做氟化剂。
易升华,前二者气态无色,后者黄色。化学活泼性、氧化性和氟化性依次递增。如XeF2 和XeF4 不和SiO2 反应,而XeF6 最终反应生成XeO3 。XeF2 可用作有机物的氟化剂,选择性较好,产率较高。XeF4 及XeF6 和某些有机物接触会引起燃烧或爆炸。改性的XeF6 为有前途的氟化剂。XeF2 可用作氧化铀的氟化剂,以分离铀235。用生成氟化氙除去核反应堆裂变产物放射性氙的小型试验已获成功。用135 XeF4 作核反应堆的减速剂正在试验。控制不同的温度,压力等条件,可由氙和氟直接反应制得上述三种氟化氙。还可通过放电、辐射、光化学反应等制备。



刚刚发现

稀有气体化合物的应用~

稀有气体化合物主要被用作氧化剂。这一类型的试剂包括:氙酸、高氙酸盐、三氧化氙。它们被称为所谓“绿色氧化剂”,所参与的反应中,最终还原产物是气态的稀有气体,不会干扰反应,而且比较容易分离。受氧化性影响,氙氟化物容易放出氟,是有机化学中比较新颖高效的氟化试剂,以二氟化氙的用途最广。氙元素稳定的盐中氟和氙的质量分数非常高,比如七氟合氙(VI)酸四氟铵(NF4XeF7)以及类似的(NF4)2XeF8已经被用作火箭推进剂中的高能氧化剂。由于氪和氙的放射性核素不易储存,因此常将它们以相应化合物的形式来存放及使用。

尽管一些理论上一些氦化合物在低温高压下能稳定存在,但还没有实验能证明这一点。氦合氢离子,化学式为HeH+,是一个带正电的离子,键级为1,可以存在与气态中,通过光谱观测到。它首次发现于1925年,通过质子和氦原子在气相中反应制得。它是已知最强的酸,质子亲和能为177.8 kJ/mol。这种离子也被称为氦氢分子离子。有人认为,这种物质可以存在于自然星际物质中。这是最简单的异核离子,可以与同核的氢分子离子(H2 +)相比较。与H2 +不同的是,它有一个永久的键偶极矩,使它更容易表现出光谱特征。不同于氦合氢离子,氢和氦构成的中性分子(HeH)在一般情况下(基态)不稳定,但它的激发态可以作为准分子存在,20世纪80年代中期首次在光谱中观测到。科学家们有三种制得氦化合物的构想一是制得TF2-离子,利用T的β衰变制得HeF2TF2-(CF3SO2-)→HeF2+β第二种是用热中子照射LiF发生核反应LiF+01n→24He+T第三种是直接用α粒子轰击固态氟,制得HeF2 氩已知唯一的化合物为氟氩化氢,氟氩化氢是一群由马库·拉萨能领导的芬兰化学家发现的这群芬兰化学家是将氩气和氟化氢在碘化铯表面冷冻至-265°C,这使氩气结成冰,然后再用大量的紫外线照射这氩冰和氟化氢的混合物,这使得氩和氟化氢反应产生氩氟化氢。经过红外光谱术分析后,他们发现氩原子已经和氟原子、氢原子产生化学键,但该化学键非常的弱,只要温度高于-256°C它就会再分解为氩和氟化氢。 氙在稀有气体元素中是化合物最多的1962年,巴特列在研究无机氟化物时,发现强氧化性的六氟化铂可将O2氧化为O2+。由于O2到O2+的电离能(1165 kJ mol)与Xe到Xe的电离能相差不大(1170 kJ mol),因此他尝试用PtF6氧化Xe。结果反应得到了橙黄色的固体。巴特利特认为它是六氟合铂酸氙(Xe[PtF6])。 这是第一个制得的稀有气体化合物。后期的实验证明该化合物化学式并非如此简单,包括XeFPtF6和XeFPt2F11。在成功合成六氟合铂酸氙,化学家又尝试用类似的六氟化钌来氧化氙。结果发现除了生成Xe(RuF6)x外,还存在有氙和氟气直接生成二元氙氟化物的副反应。因此克拉森(Howard Claassen)通过让氙和氟在高温下反应,成功合成了四氟化氙。合成的稀有气体化合物绝大多数都是氙的化合物,其中比较重要的包括:氙氟化物——XeF2、XeF4、XeF6 氙的氟氧化物——XeOF2、XeOF4、XeO2F2、XeO3F2、XeO2F4 氙氧化物——XeO3、XeO4 二氟化氙可由Xe和F2混合气暴露在阳光下制得。但有趣的是,1960年代之前的半个世纪中,却没有人发现仅仅混合这两种气体就有可能发生反应。制得了一大种类形式为XeOxY2的稀有气体化合物,其中x = 1、2、3,Y是任何电负性强的基团,比如CF3、N(SO2F)2或OTeF5。这类化合物范围相当广,可以有上千个之多,并且涉及氙和氧、氮、碳甚至金之间的化学键。一同报道的还有高氙酸、一些稀有气体卤化物和配离子。化合物Xe2Sb2F11中含有目前已知最长的化学键,其中的Xe–Xe键长308.71 pm。 稀有气体包合物在近几十年曾被广泛研究过,它们由于有可能用于储存稀有气体而引起了人们的兴趣。在这些包合物中,稀有气体原子基本上都是被包容在笼状的主体分子中,即主体分子构成笼状晶格,将稀有气体包藏在笼中。能否形成包合物主要决定于主体分子和客体分子间的几何因素是否合适。例如,氩、氪和氙可以与β-氢醌形成包合物,氦和氖却因为体积太小而无法包合在内。稀有气体包合物中,研究较多的主体分子是水、氢醌、苯酚和氟代苯酚。包合物可以用来从稀有气体中分离出He和Ne,及运输Ar、Kr和Xe。此类化合物亦可用作放射源,Kr的包合物是β粒子的安全来源,Xe的包合物则是γ射线的来源。 稀有气体原子可以被包覆在富勒烯分子中,形成多种多样的内嵌富勒烯型化合物。它们首先在1993年合成。用C60与He或Ne在3bar压力下反应,得到的大约650000个富勒烯分子中,只有一个可以与稀有气体原子形成包合物He@C60或Ne@C60;压力增大至3000bar时,产率增至0.1%。


#拓沈砍# 稀有气体的化合物稀有气体也有化合物,能不能把他们列举出来,并简单介绍一下它们的性质.(性质不是最重要,但也要,我主要想要多认识几种物质) - 作业帮
(18027403764):[答案] 氟化氙分三种:二氟化氙,四氟化氙和六氟化氙.他们均为无色晶体,其中二氟化氙熔点为129℃,四氟化氙为113℃,六氟化氙为89℃.XeF2在碱溶液中易被还原成Xe.XeF4则在水中岐化为XeO3+Xe.XeF6则水解成XeO3.氟化氙能被氢气还...

#拓沈砍# 稀有气体有哪些? -
(18027403764): 其理由在于惰性气体的“惰性”是相对的.这里的“惰性”指的是惰性气体都是由最外层有八个电子(氦最外层两个电子已排满)的稳定结构的单原子构成.因此,长期以来人们一直认为惰性气体不可能与其它物质反应生成化合物.但事实并非...

#拓沈砍# 稀有气体能与什么物质反应 - 作业帮
(18027403764):[答案] 就是楼上说的PtF6,学名叫作六氟化铂,当初世界上第一个稀有气体的化合物就是它和氙气反应而来的,XePtF6,六氟铂酸氙,当然还有其它的,比如和氟的一些简单化合物,我记得不大清楚了,貌似有三氟化氙、五氟化氙,以及其它的稀有气体...

#拓沈砍# 关于稀有气体化合物
(18027403764): 1.稀有气体最外层电子数为8,不能再得到电子,再得到电子反而不稳定,因此不能被Rb、Cs等还原,而稀有气体外层的电子可以被强电负性的F、O等吸引,形成共价键,从而形成F、O的稀有气体化合物; 2.一个Xe失掉一个电子变成Xe(+)...

#拓沈砍# 自从稀有气体被发现后,人类一直在进行寻找其化合物的尝试.1962年英国化学家巴特利特合成了第一种稀有气体化合物――六氟铂酸氙(Xe[PtF 6 ]),在... - 作业帮
(18027403764):[答案] 该化合物的分子式为XeF4 【试题分析】 根据“化合物中,各种元素的原子个数之比,等于其对应质量和相对原子质量之比的比值”,可得: N(Xe)∶N(F)=∶1.932=1∶4即化合物的分子式为XeF4.

#拓沈砍# 氦、氖、氩、氪、氙、氡 这六种稀有气体的主要作用有那些? - 作业帮
(18027403764):[答案] 稀有气体的单质在常温下为气体,且除氩气外,其余几种在大气中含量很少(尤其是氦),故得名“稀有气体”,历史上稀有气体曾被称为“惰性气体”,这是因为它们的原子最外层电子构型除氦为1s2(上标)外,其余均为8电子构型(ns2np6,...

#拓沈砍# 稀有气体的化合价? - 作业帮
(18027403764):[答案] 0族:稀有气体元素化学性质不活泼,通常可视其化合价为0,因而叫做0族. 稀有气体 稀有气体包括氦、氖、氩、氪、氙、氡等6种元素,其原子的最外层电子构型除氦为1s2(上标)外,其余均为稳定的8电子构型ns2np6(均为上标).稀有气体的化...

#拓沈砍# 空气的组成和成分.稀有气体有哪些? - 作业帮
(18027403764):[答案] 空气的组成和成分.稀有气体有哪些 目前,人们已能用实验方法精确地测定空气的成分. 实验表明,空气的成分按体积计算,大约是:氮气78%、氧气21%、稀有气体0.94%、二氧化碳0.03%、其他气体和杂质0.03%. 稀有气体包括 氦 、 氖 、 氩 、 氪 ...

#拓沈砍# 金属、稀有气体、非金属、氧化物等各举一个例子~金属、稀有气体、非金属(固态、气态)、氧化物、金属元素和非金属元素组成的化合物各举一个例子~ - 作业帮
(18027403764):[答案] 金属Na,稀有气体He,非金属固态S,非金属气态O2,氧化物H2O,金属元素和非金属元素组成化合物为NaCl