数学界23大难题有哪些 什么是数学界第一难题?

www.zhiqu.org     时间: 2024-06-02
一 数学基础问题。
1、 数是什么?
2、 四则运算是什么?
3、 加法和乘法为什么符合交换律,结合律,分配律?
4、 几何图形是什么?

二 几个未解的题。
1、求 (1/1)^3+(1/2)^3+(1/3)^3+(1/4)^3+(1/5)^3+ … +(1/n)^3=?
更一般地:
当k为奇数时 求
(1/1)^k+(1/2)^k+(1/3)^k+(1/4)^k+(1/5)^k+ … +(1/n)^k=?
背景:
欧拉求出:
(1/1)^2+(1/2)^2+(1/3)^2+(1/4)^2+(1/5)^2+ … +(1/n)^2=(π^2)/6

并且当k为偶数时的表达式。
2、e+π的超越性
背景
此题为希尔伯特第7问题中的一个特例。
已经证明了e^π的超越性,却至今未有人证明e+π的超越性。

3、素数问题。
证明:
ζ(s)=1+(1/2)^s+(1/3)^s+(1/4)^s+(1/5)^s + …

(s属于复数域)
所定义的函数ζ(s)的零点,除负整实数外,全都具有实部1/2。

背景:
此即黎曼猜想。也就是希尔伯特第8问题。
美国数学家用计算机算了ζ(s)函数前300万个零点确实符合猜想。
希尔伯特认为黎曼猜想的解决能够使我们严格地去解决歌德巴赫猜想(任一偶数可以分解为两素数之和)和孪生素数猜想(存在无穷多相差为2的素数)。

引申的问题是:素数的表达公式?素数的本质是什么?

4、 存在奇完全数吗?

背景:
所谓完全数,就是等于其因子的和的数。
前三个完全数是:
6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+124+248
目前已知的32个完全数全部是偶数。
1973年得到的结论是如果n为奇完全数,则:
n>10^50

5、 除了8=2^3,9=3^2外,再没有两个连续的整数可表为其他正整数的方幂了吗?

背景:
这是卡塔兰猜想(1842)。
1962年我国数学家柯召独立证明了不存在连续三个整数可表为其它正整数的方幂。
1976年,荷兰数学家证明了大于某个数的任何两个正整数幂都不连续。因此只要检查小于这个数的任意正整数幂是否有连续的就行了。
但是,由于这个数太大,有500多位,已超出计算机的计算范围。
所以,这个猜想几乎是正确的,但是至今无人能够证实。

6、 任给一个正整数n,如果n为偶数,就将它变为n/2,如果除后变为奇数,则将它乘3加1(即3n+1)。不断重复这样的运算,经过有限步后,一定可以得到1吗?

背景:
这角古猜想(1930)。
人们通过大量的验算,从来没有发现反例,但没有人能证明。

三 希尔伯特23问题里尚未解决的问题。
1、问题1连续统假设。
全体正整数(被称为可数集)的基数 和实数集合(被称为连续统)的基数c之间没有其它基数。
背景:1938年奥地利数学家哥德尔证明此假设在集合论公理系统,即策莫罗-佛朗克尔公理系统里,不可证伪。
1963年美国数学家柯恩证明在该公理系统,不能证明此假设是对的。
所以,至今未有人知道,此假设到底是对还是错。
2、问题2 算术公理相容性。
背景:哥德尔证明了算术系统的不完备,使希尔伯特的用元数学证明算术公理系统的无矛盾性的想法破灭。
3、 问题7 某些数的无理性和超越性。
见上面 二 的 2
5、 问题 8 素数问题。
见上面 二 的 3
6、 问题 11 系数为任意代数数的二次型。
背景:德国和法国数学家在60年代曾取得重大进展。
7、 问题 12 阿贝尔域上的克罗内克定理在任意代数有理域上的推广。
背景:此问题只有些零散的结果,离彻底解决还十分遥远。
8、 问题13 仅用二元函数解一般7次代数方程的不可能性。
背景:1957苏联数学家解决了连续函数情形。如要求是解析函数则此问题尚未完全解决。
9、 问题15 舒伯特计数演算的严格基础。
背景: 代数簌交点的个数问题。和代数几何学有关。
10、 问题 16 代数曲线和曲面的拓扑。
要求代数曲线含有闭的分枝曲线的最大数目。和微分方程的极限环的最多个数和相对位置。
11、 问题 18 用全等多面体来构造空间。
无限个相等的给定形式的多面体最紧密的排列问题,现在仍未解决。
12、 问题 20 一般边值问题。
偏微分方程的边值问题,正在蓬勃发展。
13、 问题 23 变分法的进一步发展。

四 千禧七大难题
2000年美国克雷数学促进研究所提出。为了纪念百年前希尔伯特提出的23问题。每一道题的赏金均为百万美金。

1、 黎曼猜想。
见 二 的 3
透过此猜想,数学家认为可以解决素数分布之谜。
这个问题是希尔伯特23个问题中还没有解决的问题。透过研究黎曼猜想数
学家们认为除了能解开质数分布之谜外,对於解析数论、函数理论、
椭圆函数论、群论、质数检验等都将会有实质的影响。

2、杨-密尔斯理论与质量漏洞猜想(Yang-Mills Theory and Mass Gap
Hypothesis)
西元1954 年杨振宁与密尔斯提出杨-密尔斯规范理论,杨振宁由
数学开始,提出一个具有规范性的理论架构,后来逐渐发展成为量子
物理之重要理论,也使得他成为近代物理奠基的重要人物。

杨振宁与密尔斯提出的理论中会产生传送作用力的粒子,而他们
碰到的困难是这个粒子的质量的问题。他们从数学上所推导的结果
是,这个粒子具有电荷但没有质量。然而,困难的是如果这一有电荷
的粒子是没有质量的,那麼为什麼没有任何实验证据呢?而如果假定
该粒子有质量,规范对称性就会被破坏。一般物理学家是相信有质
量,因此如何填补这个漏洞就是相当具挑战性的数学问题。

3、P 问题对NP 问题(The P Versus NP Problems)
随著计算尺寸的增大,计算时间会以多项式方式增加的型式的问题叫做「P 问题」。

P 问题的P 是Polynomial Time(多项式时间)的头一个字母。已
知尺寸为n,如果能决定计算时间在cnd (c 、d 为正实数) 时间以下
就可以或不行时,我们就称之为「多项式时间决定法」。而能用这个
算法解的问题就是P 问题。反之若有其他因素,例如第六感参与进来
的算法就叫做「非决定性算法」,这类的问题就是「NP 问题」,NP 是
Non deterministic Polynomial time (非决定性多项式时间)的缩写。

由定义来说,P 问题是NP 问题的一部份。但是否NP 问题里面有
些不属於P 问题等级的东西呢?或者NP 问题终究也成为P 问题?这
就是相当著名的PNP 问题。

4、.纳维尔–史托克方程(Navier–Stokes Equations)
因为尤拉方程太过简化所以寻求作修正,在修正的过程中产生了
新的结果。法国工程师纳维尔及英国数学家史托克经过了严格的数学
推导,将黏性项也考虑进去得到的就是纳维尔–史托克方程。

自从西元1943 年法国数学家勒雷(Leray)证明了纳维尔–史托
克方程的全时间弱解(global weak solution)之后,人们一直想知道
的是此解是否唯一?得到的结果是:如果事先假设纳维尔–史托克方
程的解是强解(strong solution),则解是唯一。所以此问题变成:弱解与强解之间的差距有多大,有没有可能弱解会等於强解?换句话说,是不是能得到纳维尔–史托克方程的全时间平滑解?再者就是证
明其解在有限时间内会爆掉(blow up in finite time)。

解决此问题不仅对数学还有对物理与航太工程有贡献,特别是乱
流(turbulence)都会有决定性的影响,另外纳维尔–史托克方程与奥
地利伟大物理学家波兹曼的波兹曼方程也有密切的关系,研究纳维
尔–史托克(尤拉)方程与波兹曼方程(Boltzmann Equations)两
者之关系的学问叫做流体极限(hydrodynamics limit),由此可见纳
维尔–史托克方程本身有非常丰富之内涵。

5.庞加莱臆测(Poincare Conjecture)
庞加莱臆测是拓朴学的大问题。用数学界的行话来说:单连通的
三维闭流形与三维球面同胚。
从数学的意义上说这是一个看似简单却又非
常困难的问题,自庞加莱在西元1904 年提出之
后,吸引许多优秀的数学家投入这个研究主题。
庞加莱(图4)臆测提出不久,数学们自然的将
之推广到高维空间(n4),我们称之为广义庞加莱臆测:单连通的



n(n4)维闭流形,如果与n

≥ 维球面有相同的基本群(fundamental group)则必与n维球面同胚。

经过近60 年后,西元1961 年,美国数学家斯麦尔(Smale)以
巧妙的方法,他忽略三维、四维的困难,直接证明五维(n5)以上的


广义庞加莱臆测,他因此获得西元1966 年的费尔兹奖。经过20年之
后,另一个美国数学家佛瑞曼(Freedman)则证明了四维的庞加莱臆
测,并於西元1986年因为这个成就获得费尔兹奖。但是对於我们真
正居住的三维空间(n3),在当时仍然是一个未解之谜。

=

一直到西元2003 年4 月,俄罗斯数学家斐雷曼(Perelman)於
麻省理工学院做了三场演讲,在会中他回答了许多数学家的疑问,许
多迹象显示斐雷曼可能已经破解庞加莱臆测。数天后「纽约时报」首
次以「俄国人解决了著名的数学问题」为题向公众披露此一消息。同
日深具影响力的数学网站MathWorld 刊出的头条文章为「庞加莱臆测

被证明了,这次是真的!」[14]。

数学家们的审查将到2005年才能完成,到目前为止,尚未发现
斐雷曼无法领取克雷数学研究所之百万美金的漏洞。

6.白之与斯温纳顿-戴尔臆测(Birch and Swinnerton-Dyer
Conjecture)
一般的椭圆曲线方程式 y^2=x^3+ax+b ,在计算椭圆之弧长时
就会遇见这种曲线。自50 年代以来,数学家便发现椭圆曲线与数论、

几何、密码学等有著密切的关系。例如:怀尔斯(Wiles)证明费马
最后定理,其中一个关键步骤就是用到椭圆曲线与模形式(modularform)之关系-即谷山-志村猜想,白之与斯温纳顿-戴尔臆测就是与
椭圆曲线有关。

60年代英国剑桥大学的白之与斯温纳顿-戴尔利用电脑计算一些
多项式方程式的有理数解。通常会有无穷多解,然而要如何计算无限
呢?其解法是先分类,典型的数学方法是同余(congruence)这个观念
并藉此得同余类(congruence class)即被一个数除之后的余数,无穷
多个数不可能每个都要。数学家自然的选择了质数,所以这个问题与
黎曼猜想之Zeta 函数有关。经由长时间大量的计算与资料收集,他
们观察出一些规律与模式,因而提出这个猜测。他们从电脑计算之结
果断言:椭圆曲线会有无穷多个有理点,若且唯若附於曲线上面的

Zeta 函数ζ (s) = 时取值为0,即ζ (1)

;当s1= 0

7.霍奇臆测(Hodge Conjecture)
「任意在非奇异投影代数曲体上的调和微分形式,都是代数圆之
上同调类的有理组合。」
最后的这个难题,虽不是千禧七大难题中最困难的问题,但却可
能是最不容易被一般人所了解的。因为其中有太多高深专业而且抽象
参考资料:《数学的100个基本问题》《数学与文化》《希尔伯特23个数学问题回顾》

数学界的七大难题是什么?~

21世纪数学七大难题
最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣
布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以
下是这七个难题的简单介绍。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题
在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅
中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女
士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这
样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问
题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与
此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你
可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,
那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个
答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被
看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook
)于1971年陈述的。
“千僖难题”之二: 霍奇(Hodge)猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样
的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来
形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有
力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些
没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来
说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
“千僖难题”之三: 庞加莱(Poincare)猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表
面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸
缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说
,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球
面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体
)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
“千僖难题”之四: 黎曼(Riemann)假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的
数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布
并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密
相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的
所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它
对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大
约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学
之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中
所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如
此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学
家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来
没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引
进根本上的新观念。
“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气
式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯
托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的
理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托
克斯方程中的奥秘。
“千僖难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾
经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正
如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一
般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷
通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特
别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(
1)不等于0,那么只存在有限多个这样的点。

应该没有绝对的第一难题..



哥德巴赫猜想

1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。

实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和。1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题。但是第一个问题至今仍未解决。由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”。1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其中c是常数。1956年中国数学家王元证明了“3+4”,随后又证明了“3+3”,“2+3”。60年代前半期,中外数学家将命题推进到“1+3”。1966年中国数学家陈景润证明了“1+2”,这一结果被称为“陈氏定理”,至今仍是最好的结果。陈景润的杰出成就使他得到广泛赞誉,不仅仅是因为“陈氏定理”使中国在哥德巴赫猜想的证明上处于领先地位,更重要的是以陈景润为代表的一大批中国数学家克服重重困难,不畏艰险,永攀高峰的精神将鼓舞和激励有志青年为使中国成为21世纪世界数学大国而奋斗!


#阚话宽# 世界十大数学难题有哪些 -
(15241247639): 难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 难题”之二: 霍奇(Hodge)猜想 难题”之三: 庞加莱(Poincare)猜想 难题”之四: 黎曼(Riemann)假设 难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 难题”之八:几何尺规作图问题 难题”之九:哥德巴赫猜想 难题”之十:四色猜想

#阚话宽# 现代数学的三大难题指什么 -
(15241247639): 3.史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了. 1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想: 一、任何不小于6的偶数,都是两个奇质数之和; 二、任何不小于9的...

#阚话宽# 世界的几大三何难题是? -
(15241247639): 这是尺规作图的三大难题,是由古希腊人提出的,当然由于我们的现代几何学知识是从希腊发源的,因此这三个古典几何问题在几何学中有着很高的地位. 至于现代几何学的难题,那可就多了,因为几何是近代数学的两大领域之一,另外一个是...

#阚话宽# 黎曼猜想将揭谜底 困扰数学界的千禧难题有哪些
(15241247639): 1P=NP?2霍奇猜想3庞加莱猜想4黎曼假设5杨-米尔斯规范场存在性和质量间隔假设6NS方程解的存在性与光滑性7贝赫和斯维讷通-戴尔猜想以下为事件新闻原稿,供参考. 阿蒂亚此前宣布,将于9月24号在海德堡获奖者论坛的演讲中公布他对黎...

#阚话宽# 有关七大世纪数学难题的问题这七个题目分别是:1.庞加莱猜想2.黎
(15241247639): 庞加莱是在1904年发表的一组论文中提出这一猜想的:“单连通的三维闭流形同胚于三维球面.”它后来被推广为:“任何与n维球面同伦的n维闭流形必定同胚于n维球面...

#阚话宽# 二十世纪 数学界的三大难题是什么?
(15241247639): 费马最后定理 四色猜想 哥德巴赫猜想 希望对你有用,望采纳,谢谢~

#阚话宽# 数学界十大难题
(15241247639): P(多项式算法)问题对NP(非多项式算法)问题 霍奇(Hodge)猜想 黎曼(Riemann)假设 杨-米尔斯(Yang-Mills)存在性和质量缺口 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 三等分任意角 二倍立方体 化圆为方 费马最后定理

#阚话宽# 希尔伯特的23个数学问题分别的提出人和问题是什么
(15241247639): 希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析. (1)康托的连续统基数问题. (2)算术公理系统的无矛盾性. (3)只根据合同公...

#阚话宽# 数学上的十大难题是什么?
(15241247639): 1、几何尺规作图问题 2、蜂窝猜想 3、孪生素数猜想 4、费马最后定理 5、四色猜想 6、哥德巴赫猜想