平面几何知识点初中 高中数学中哪些知识点属于平面几何部分

www.zhiqu.org     时间: 2024-05-23
平面几何知识点汇总(一)
知识点一 相交线和平行线
1.定理与性质
对顶角的性质:对顶角相等。
2.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
5.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
知识点二 三角形
一、三角形相关概念
1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形
要点:①三条线段;②不在同一直线上;③首尾顺次相接.
2.三角形中的三种重要线段
(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.
二、三角形三边关系定理
①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.
注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可
三、三角形的稳定性
三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.
四、三角形的内角
结论1:三角形的内角和为180°.表示: 在△ABC中,∠A+∠B+∠C=180°
结论2:在直角三角形中,两个锐角互余.
注意:①在三角形中,已知两个内角可以求出第三个内角
如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.
五、三角形的外角
1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.
2.性质:
①三角形的一个外角等于与它不相邻的两个内角的和.
②三角形的一个外角大于与它不相邻的任何一个内角.
③三角形的一个外角与与之相邻的内角互补
六、多边形
①多边形的对角线条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°
知识点三 全等三角形
一、全等三角形
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。(SSS)
(2)两角和它们的夹边对应相等的两个三角形全等。(ASA)
(3)两角和其中一角的对边对应相等的两个三角形全等。(AAS)
(4)两边和它们的夹角对应相等的两个三角形全等。(SAS)
(5)斜边和一条直角边对应相等的两个直角三角形全等。(HL)
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
二、轴对称图形
(一)基本定义
1.轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.
2.线段的垂直平分线
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
3.轴对称变换
由一个平面图形得到它的轴对称图形叫做轴对称变换.
4.等腰三角形
有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
5.等边三角形
三条边都相等的三角形叫做等边三角形.
(二)性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离相等.
3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).
(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).
4.等腰三角形的性质
(1)等腰三角形的两个底角相等(简称“等边对等角”).
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.
(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.
(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.
5.等边三角形的性质
(1)等边三角形的三个内角都相等,并且每一个角都等于60°.
(2)等边三角形是轴对称图形,共有三条对称轴.
(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.
(三)有关判定
1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
知识点四 勾股定理
1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方

勾:直角三角形较短的直角边
股:直角三角形较长的直角边
弦:斜边
勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。)
*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13
3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)

平面几何知识点汇总(一) 知识点一 相交线和平行线

1.定理与性质

对顶角的性质:对顶角相等。

2.垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.平行线的性质:

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

5.平行线的判定:

判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

知识点二 三角形

一、三角形相关概念

1(三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:?三条线段;?不在同一直线上;?首尾顺次相接( 2(三角形中的三种重要线段

(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线(

(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线(

(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高(

1平面几何知识点汇总(一)

1/16页
二、三角形三边关系定理

三角形两边之和大于第三边,故同时满足?ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b(

三角形两边之差小于第三边,故同时满足?ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a(

注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可

三、三角形的稳定性

三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性(例如起重机的支架采用三角形结构就是这个道理(

四、三角形的内角

结论1:三角形的内角和为180(表示: 在?ABC中,?A+B+C=180 结论2:在直角三角形中,两个锐角互余(

注意:?在三角形中,已知两个内角可以求出第三个内角

如:在?ABC中,?C=180,(?A+B)

在三角形中,已知三个内角和的比或它们之间的关系,求各内角(

如:?ABC中,已知?A:?B:?C=2:3:4,求?A、?B、?C的度数( 五、三角形的外角

1(意义:三角形一边与另一边的延长线组成的角叫做三角形的外角( 2(性质:

三角形的一个外角等于与它不相邻的两个内角的和.

三角形的一个外角大于与它不相邻的任何一个内角.

三角形的一个外角与与之相邻的内角互补

六、多边形

n(n,3)多边形的对角线条对角线;?n边形的内角和为(n,2)×180;?多边形的外2

角和为360

2平面几何知识点汇总(一)

2/16页
知识点三 全等三角形

一、全等三角形

、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 1

即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全

等三角形。

2、全等三角形的性质

(1)全等三角形对应边相等;(2)全等三角形对应角相等;

、全等三角形的判定方法 3

(1)三边对应相等的两个三角形全等。(SSS)

(2)两角和它们的夹边对应相等的两个三角形全等。(ASA)

(3)两角和其中一角的对边对应相等的两个三角形全等。(AAS)

(4)两边和它们的夹角对应相等的两个三角形全等。(SAS)

(5)斜边和一条直角边对应相等的两个直角三角形全等。(HL) 4、角平分线的性质及判定

性质:角平分线上的点到这个角的两边的距离相等

判定:到一个角的两边距离相等的点在这个角平分线上 二、轴对称图形

(一)基本定义

1.轴对称图形

如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,

这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点. 2.线段的垂直平分线

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线 3.轴对称变换

由一个平面图形得到它的轴对称图形叫做轴对称变换. 4.等腰三角形

有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰

所夹的角叫做顶角,底边与腰的夹角叫做底角.

5.等边三角形

三条边都相等的三角形叫做等边三角形.

3平面几何知识点汇总(一)

3/16页
(二)性质

1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. 2.线段垂直平分钱的性质

线段垂直平分线上的点与这条线段两个端点的距离相等.

3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y). (2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y). 等腰三角形的性质 4.

(1)等腰三角形的两个底角相等(简称“等边对等角”).

)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合. (2

(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.

(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等. (5)等腰三角形一腰上的高与底边的夹角是顶角的一半。

(6)等腰三角形顶角的外角平分线平行于这个三角形的底边. 5.等边三角形的性质

(1)等边三角形的三个内角都相等,并且每一个角都等于60. (2)等边三角形是轴对称图形,共有三条对称轴.

(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合. (三)有关判定

1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 3.三个角都相等的三角形是等边三角形.

4.有一个角是60的等腰三角形是等边三角形.

知识点四 勾股定理

1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么

222a,b,c. 即直角三角形两直角边的平方和等于斜边的平方



勾:直角三角形较短的直角边

4平面几何知识点汇总(一)

4/16页
股:直角三角形较长的直角边

弦:斜边

ba勾股定理的逆定理:如果三角形的三边长a,b,c有下面关DCac222Hb系:a,b,c,那么这个三角形是直c

EGc角三角形。 Fbcaab222ba2. 勾股数:满足a,b,c的三个正整数叫做勾股数(注意:若cBA

Aaa,b,c、为勾股数,那么ka,kb,kc同样也是勾D

股数组。) bc

*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 Ec222 a3. 判断直角三角形:如果三角形的三边长a、b、c满足a+b=c,

BCb那么这个三角形是直角三角形。(经典直角三

角形:勾三、股四、弦五)

其他方法:(1)有一个角为90的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是:

(1)确定最大边(不妨设为c);

222(2)若c,a,b,则?ABC是以?C为直角的三角形;

222若a,b,c,则此三角形为钝角三角形(其中c为最大边);

222若a,b,c,则此三角形为锐角三角形(其中c为最大边) 4.注意:(1)直角三角形斜边上的中线等于斜边的一半

(2)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的

一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等

于30。

5. 勾股定理的作用:

(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为的线段 n

6.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法

知识点一 相交线和平行线
1.定理与性质
对顶角的性质:对顶角相等。
2.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
5.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
知识点二 三角形
一、三角形相关概念
1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形
要点:①三条线段;②不在同一直线上;③首尾顺次相接.
2.三角形中的三种重要线段
(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.
二、三角形三边关系定理
①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.
注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可
三、三角形的稳定性
三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.
四、三角形的内角
结论1:三角形的内角和为180°.表示: 在△ABC中,∠A+∠B+∠C=180°
结论2:在直角三角形中,两个锐角互余.
注意:①在三角形中,已知两个内角可以求出第三个内角
如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.
五、三角形的外角
1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.
2.性质:
①三角形的一个外角等于与它不相邻的两个内角的和.
②三角形的一个外角大于与它不相邻的任何一个内角.
③三角形的一个外角与与之相邻的内角互补
六、多边形
①多边形的对角线条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°
知识点三 全等三角形
一、全等三角形
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。(SSS)
(2)两角和它们的夹边对应相等的两个三角形全等。(ASA)
(3)两角和其中一角的对边对应相等的两个三角形全等。(AAS)
(4)两边和它们的夹角对应相等的两个三角形全等。(SAS)
(5)斜边和一条直角边对应相等的两个直角三角形全等。(HL)
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
二、轴对称图形
(一)基本定义
1.轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.
2.线段的垂直平分线
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
3.轴对称变换
由一个平面图形得到它的轴对称图形叫做轴对称变换.
4.等腰三角形
有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
5.等边三角形
三条边都相等的三角形叫做等边三角形.
(二)性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离相等.
3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).
(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).
4.等腰三角形的性质
(1)等腰三角形的两个底角相等(简称“等边对等角”).
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.
(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.
(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.
5.等边三角形的性质
(1)等边三角形的三个内角都相等,并且每一个角都等于60°.
(2)等边三角形是轴对称图形,共有三条对称轴.
(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.
(三)有关判定
1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
知识点四 勾股定理
1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方

勾:直角三角形较短的直角边
股:直角三角形较长的直角边
弦:斜边
勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。)
*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13
3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)
其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:
(1)确定最大边(不妨设为c);
(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;
若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);
若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)
4.注意:(1)直角三角形斜边上的中线等于斜边的一半
(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:
(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为的线段
6.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法

数学呢,是一bai个研究数量,结构变化和空间模du型等等的含义的一种科学方zhi式,它是物理化学等dao科目的基础.而且和我们的日常生活有着很大的关联,所以说,学好数学对于我们每个人来说都是非常重要的.下面就向大家来介绍一下怎么学习初中数学吧!

学习数学还必要的,因为数学是从幼儿园开始就接触的科目,如果说不会数学,那不是太丢人了吗?以下就是关于怎么学习初中数学的技巧:

初中数学整式总结

一:日常数学的学习

首先,在平时的学习数学当中,事先需要在课前进行认真的预习.预习的目的呢,就是为了能够更好的在课堂上吸收老师所讲的知识,通过预习之后.我们把握的程度一般就在80%左右了.随后在预习当中,不懂的地方就要在课堂上解决.不会的地方需要注重的表明起来,之后会了就多做些例题进行巩固.

而且具体的预习方式方法如下:把整本书的题目先都做完,同时画出知识点的含义.这个过程大约在半个小时左右,如果在时间允许的状况之外,还可以先做一下会写的练习题,不会的空下,等到明天老师讲课的时候再做.

其次呢,在学习数学上是需要和练习题一起结合的,如果说你只在课堂上听课是没有用的.因为你虽然说你是听懂了,但是你做题还是不会的,所以数学注重的是做题,在听懂的基础上还是要多做些练习题的,因为练习题多做了.之后你的.能力才会慢慢的增强.如果说遇到了难题,不懂的题一定要提出来,不懂就问,不能把它咽下去,谁也不说,否则在考试的时候遇到这些题目,你依然不会.

然后呢,就是复习,写完作业之后呢,对于当天学的内容需要再看一遍,巩固一下基础知识.然后再买些练习册,或者是在网上搜一些题再做一下.这样有助于你数学成绩的提高.

初中平面几何初步知识包含什么内容,有相关的知识点吗?~

平面几何著名定理
1、勾股定理(毕达哥拉斯定理)
2、射影定理(欧几里得定理)
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分
4、四边形两边中心的连线与两条对角线中心的连线交于一点
5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直平分线交于一点。
7、三角形的三条高线交于一点
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,
11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇*大上定理:(圆内接四边形的九点圆)
圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上
19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD
20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,
21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。
23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有
BPPC×CQQA×ARRB=1
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.
28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M
29、塞瓦定理的逆定理:(略)
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)
33、西摩松定理的逆定理:(略)
34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。
35、史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。
36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏).
37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点
38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。
39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点
40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。
41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。
42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。
43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。
44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)
47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。
48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.
49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。
50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。
51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。
52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。
53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。
54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。
55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。
57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。
58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。
61、巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线。
62,Casey定理
若四个圆都与第五个圆内切(或都外切),前四个圆在第五个圆上的切点以顺时针或逆时针方向排列,第i个圆与第j个圆的外公切线的长用lij表示,则有
l12×l34+l23×l41=l13×l24.
Theorem 1. 对于平面三点A,B,C,AP,BQ,CR分别是A,B,C到某定圆的切线段,则⊙ABC与该定圆相切当且仅当AB⋅CR±AC⋅BQ±BC⋅AP=0.
Theorem 2. 对于共轴的三圆,其中一圆上任意一点关于其余两圆的幂的比值是定值,这个定值等于这个圆圆心到其余两圆圆心距离之比
63,Mannheim定理:
ΔABC中,I为内心,D在BC上,圆k和AD,BC以及ΔABC的外接圆相切,切AD,BC于X,Y
求证:X,Y,I共线

对于初中的定理要精通。一·三角形全等以及题型应用,二·三角形相似以及题型应用,三·多边形的性质,四·圆的内接三角形以及内接多边形的性质,五·圆的切割线定理,六·明白三角形的重心、内心、外心、旁心、垂心等定义及应用,





#帅义钥# 请问什么是平面几何知识?能讲一下吗?谢谢 -
(18711527762): 平面几何是相对于立体几何来说的,就是同一平面内线与线,形状与形状之间的关系. 相交线和平行线 1.定理与性质 对顶角的性质:对顶角相等. 2.垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直. 性质2:连接直线外一点与...

#帅义钥# 求初中所有平面几何的基本性质
(18711527762): 1. 平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直...

#帅义钥# 初中数学 平面几何
(18711527762): 楼上的答案 这种题 叫 '密铺'了 ,就是用两种 把一个平面铺满 可以想想 贴瓷砖铺地面 设有正N边形 和正M边形(N<M) N边形的外角A=360`-(180`-360`/N),M的内角为B=180`-360/M 要使两种正多边形能够密铺,则必须使正N边形的外角A是B的整数倍.你可以在纸上比划一下就明白了.代入边数,4是对的

#帅义钥# 什么是平面几何知识? -
(18711527762): 几何分平面几何和立体几何 都是在平面上完成的 平面几何 主要就是平面图形 长方形 三角形 梯形 圆形 椭圆 以及不规则图形 立体几个主要就是 长方体 锥形 圆柱体 四面体 球 总之呢 平面几何就是研究平面图形 立体几何就是研究立体图形 但是两者都是在平面上画出来的 只不过立体几何需要更强大的空间想象力 建立在平面几何的基础之上

#帅义钥# 数学平面几何知识有哪些?
(18711527762): 没听说过平面几何三大难题吗 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍. 这些都是不可能用尺规作出的 1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明.

#帅义钥# 初中数学平面几何
(18711527762): 三角形ABC中,AD是三角形ABC的角平分线,且AB=AD+AC 比较 ∠C与2∠B的大小 ,角ABE怎么等于2角ABE? 证明: 在AB上截取AE=AC,连接DE ∵AD平分∠BAC ∴∠BAC=∠CAD ∵AE=AC,AD=AD ∴△ADE≌△ADC ∴DE=DC,∠AED=∠C ∵AB=AC+CD ∴BE=CD ∴DE=BE ∴∠AED=∠B+∠BDE=2∠B ∴∠C=2∠B

#帅义钥# 初中平面几何
(18711527762): 证明:延长AH交BC于P,在EC上取EQ = AE 连接PQ、ED、EH 易证明:△ABH≌△PBH 从而可得:BA = BP AH = HP 因为:AH=HP AE=EQ 所以:EH//PQ 因为圆 I 内切于三角形,所以,BD = BF 于是,DP = AF = AE = EQ 因为:CE = CD 所以,易得:PQ//DE EH//PQ DE//PQ 所以,E、H、D在同一条直线上.(经过直线外一点,有且只有一条直线平行于已知直线)

#帅义钥# 什么是平面几何 -
(18711527762): 平面定义: 平面是一个只描述而不定义的最基本概念,是由显示生活中(例如镜面、平静的水面等)的实物抽象出来的数学概念,但又与这些实物有根本的区别,既具有无限延展性(也就是说平面没有边界),...

#帅义钥# 求初中几何知识
(18711527762): 解:∵D为AB中点 又∵DE⊥AB ∴△AEB为以AE、BE为腰的等腰三角形 ∴BE=AE ∵C△BCE=BE+CE+BC=8(C是周长的意思) =AE+CE+BC=8 ∴AC+BC=8 联立AC+BC=8,AC-BC=2 解这个方程组,得到,AC=5,BC=3 ∵AB=AC ∴AB=5 则AB=5,BC=3

#帅义钥# 立体几何,解析几何,平面几何的区别
(18711527762): 平面几何是在平面内研究图形的性质,是立体几何、解析几何的基础;立体几何是在三维空间中研究图形、物体的性质;解析几何是在坐标系中通过点、线的坐标化来简化问题,使之易于研究,将具体的点和线段化为抽象的数学符号,它是建立在平面几何和坐标系的基础上的.总的来说,平面几何考查的是平面思维,立体几何考查平面几何和空间想象能力,而解析几何考查平面几何和坐标系.三者可以理解为:平面几何—立体几何、平面几何—解析几何.还有就是向量了,它在所有几何学中应用是很广的,用它来解决问题很方便.